1.Finite element analysis of optimization of femoral prosthesis implantation position in unicompartmental knee arthroplasty in osteoporotic patients
Mengfei LIU ; Gang CHEN ; Yihan SHI ; Lin ZENG ; Kan JIANG ; Yilihamujiang·Wusiman
Chinese Journal of Tissue Engineering Research 2025;29(3):464-470
BACKGROUND:The reasonable implantation range of femoral prosthesis in unicompartmental knee arthroplasty in patients with osteoporosis has not been investigated,and previous studies have often been based on unicompartmental knee arthroplasty models in normal bone,with fewer mechanical studies in models with non-normal bone.Complications after unicompartmental knee arthroplasty have been shown to be highly associated with osteoporosis. OBJECTIVE:To analyze the biomechanical effects of the coronal inclination of the Sled fixed platform femoral prosthesis on unicompartmental knee arthroplasty in patients with osteoporosis and to find the correlation between osteoporosis and mid-and long-term complications after unicompartmental knee arthroplasty. METHODS:Based on the digital imaging technology to obtain the data of the knee joint and prosthesis,a normal bone knee model is then created by using specialized software such as Mimics and Geomagic studio.Based on a validated normal bone knee model,an osteoporotic knee model was created by changing the material parameters.Totally 14 unicompartmental knee arthroplasty finite element models were created using Sled fixed platform femoral prosthesis:standard position(0°),varus and valgus angles:3°,6°,9° in the normal bone and osteoporosis groups.Stress changes on the surface of polyethylene liner,cancellous bone under tibial prosthesis,and cortical bone were calculated and analyzed in all unicompartmental knee arthroplasty models. RESULTS AND CONCLUSION:(1)In the osteoporotic models,the high stress values of the polyethylene liner surface and the cancellous bone under the tibial prosthesis increased with the increase of the tilt angle of the femoral prosthesis,and the high stress values of the cortical bone surface under the tibial prosthesis increased with the increase of the prosthesis valgus angles and decreased with the increase of the varus angles.(2)For the polyethylene liner surface as well as the subcortical bone surface of the tibial prosthesis,the high stress values of the models for each inclination angle in the osteoporosis group were greater than those of the corresponding models in the normal bone group.For the surface of the cancellous bone under the tibial prosthesis,the high stress values of the tilt angle models of the osteoporosis groups were smaller than those of the normal bone groups.(3)Osteoporosis may cause biomechanical abnormalities in the internal structures of the knee after unicondylar replacement,increasing the potential risk of postoperative aseptic loosening of the prosthesis and periprosthetic fractures.Varus and valgus of the femoral prosthesis in the coronal plane should be avoided as much as possible when performing medial unicompartmental knee arthroplasty with a Sled fixation platform in osteoporotic knees.
2.Effects of Shujin Jiannao Formula (舒筋健脑方) on Neural Repair and PI3K-Akt-mTOR Pathway of Brain Tissue in Cerebral Palsy Model Rats
Ruiqin YU ; Yanjun MO ; Houjun ZHANG ; Gang LIU ; Zhuoluo ZHOU ; Zechen RUAN ; Lin XU ; Xiaohong MU
Journal of Traditional Chinese Medicine 2025;66(10):1038-1045
ObjectiveTo explore the possible mechanisms of Shujin Jiannao Formula (舒筋健脑方) for cerebral palsy. MethodsThirty 7-day-old SD rats were randomly divided into normal group, model group, and Shujin Jiannao Formula group, with 10 rats in each group. The model group and Shujin Jiannao Formula group established a cerebral palsy model by the classic Rice-Vannucci method. After successful modeling, rats in Shujin Jiannao Formula group were given Shujin Jiannao Formula 16 g/(kg·d) by gavage, while the normal group and model group were given normal saline 10 ml/(kg·d) by gavage once a day. After one week of intervention, the rats' body weight was measured, and Zea-Longa scores, the righting reflex test, and the hindlimb suspension test were conducted for assessment; hematoxylin-eosin (HE) staining and Nissl staining were used to observe pathological changes in brain tissue, and the number of Nissl-positive neurons was counted; enzyme-linked immunosorbent assay (ELISA) was employed to measure levels of inflammatory cytokines in the brain tissue, specifically interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α); immunofluorescence was used to detect the expression levels of neurofilament protein 200 (NF200) and myelin basic protein (MBP) in brain tissue; Western Blot analysis was conducted to determine the protein levels of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt/PKB/Rac), and mammalian target of rapamycin (mTOR) in brain tissue. ResultsCompared with the normal group, rats in the model group showed significantly higher Zea-Longa scores and lower scores in the hindlimb suspension test (P<0.01); pathological findings revealed loose structure in the cerebral cortex, hippocampal atrophy, and neuronal damage in brain tissue. Levels of IL-1β and TNF-α elevated, and the number of Nissl-stained positive neurons in the cortex and hippocampal CA1 region reduced, and immunofluorescence intensity of NF200 and MBP, as well as protein expression levels of PI3K and mTOR, significantly decreased (P<0.05 or P<0.01). Compared with the model group, rats in Shujin Jiannao Formula group showed decreased Zea-Longa scores and increased hindlimb suspension test scores (P<0.05); pathological damage in brain tissue alleviated, levels of IL-1β and TNF-α reduced, the number of Nissl-stained positive neurons in the cortex and hippocampal CA1 region increased, and the immunofluorescence intensity of NF200 and MBP, as well as the protein levels of PI3K and mTOR, significantly elevated (P<0.05 or P<0.01). There were no statistically significant differences among the groups in body weight, body-turning time, or AKT protein levels in brain tissue (P>0.05). ConclusionShujin Jiannao Formula can improve the neurological function of rats with cerebral palsy, exert neurorestorative effects, and its mechanism of action may be related to the reduction of inflammatory response in brain tissue and the activation of the PI3K/AKT/mTOR signaling pathway.
3.Current situation of preservatives and sweeteners usage in beverages sold near schools in Anshun City
LIU Yujie, XU Lin,GONG Ling,WEI Gang, ZHAO Lianwei, QU Guangsheng, CAI Guixiang
Chinese Journal of School Health 2025;46(7):1051-1054
Objective:
To analyze the characteristics and safety risks of preservatives and sweeteners in beverages sold near schools in Anshun City, so as to provide a evidence for formulating targeted regulatory strategies in campus.
Methods:
From December 2023 to July 2024, 834 beverage samples were collected from sales points near primary and secondary schools in Xixiu District and four surrounding townships of Anshun City by a stratified random sampling method. High performance liquid chromatography was used to detect three preservatives (sorbic acid, benzoic acid and dehydroacetic acid) and four sweeteners (sodium saccharin, acesulfame-K, aspartame, and neotame). Differences were analyzed using the Chi-square test.
Results:
The overall exceedance rate of preservative was 8.6% (72 samples), with dehydroacetic acid showing the highest exceedance rate (7.0%, 58 samples), significantly higher than sorbic acid (0.6%, 5 samples) and benzoic acid (0.4%, 3 samples) ( χ 2=90.85, P <0.01). The overall exceedance rate of sweetener was 10.4% (87 samples), with sodium saccharin having the highest exceedance rate ( 6.2 %, 52 samples),significantly higher than neotame (2.8%, 23 samples), acesulfame-K (0) and aspartame (0) ( χ 2=262.04, P <0.01). Potential risks were identified due to the co occurrence of multiple additive exceedances, including 0.7% (6 samples) for mixed preservatives and 1.6% (13 samples) for mixed sweetener. No statistically significant differences were found in preservative (7.2%, 26 samples) or sweetener (12.3%, 44 samples) exceedance rates between micro enterprises and large, medium and small enterprises ( χ 2=2.67, 5.16, both P >0.05).
Conclusion
Systemic misuse risk of food additives in beverages sold near school necessitates a risk traceability based regulatory framework, with emphasis on standardizing enterprise production practices and strengthening oversight of sales outlets near campuses.
4.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering.
5.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia
Wei-Xiu JI ; Jia-Lin LÜ ; Yi-Fan MA ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(8):2033-2050
Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β‑Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
6.Three-dimensional analysis of midpalatal suture maturation stages in patients with maxillary transverse deficiency
ZHOU Yan ; LIN Jiaxing ; maxillary transverse deficiency / midpalatal suture maturation / cone-beam computed tomography / the surface area of palate / the volume of palate / the palatal vault / the width of the arch / the length of the palate Shuai ; ZHANG Gang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(10):852-861
Objective:
To investigate the differences in three-dimensional maxillary and palatal parameters as well as midpalatal suture maturation stages between Skeletal Class I malocclusion patients with maxillary transverse deficiency (MTD) and normal maxillary transverse development, in order to provide clinical guidance for orthodontic diagnosis and treatment
Methods:
This study was approved by the institutional ethics committee and informed consent was obtained. Cone-bean CT data from 66 Skeletal Class I malocclusion patients [22 males, 44 females; age (14.39 ± 1.68) years] were analyzed. Based on Yonsei University width analysis, participants were divided into two groups: the maxillary transverse deficiency group [n = 33, age (14.34 ± 1.99) years] and the maxillary transverse normal group [n = 33, age (14.43 ± 1.33) years]. Parameters compared included midpalatal suture maturation stages (A-E), maxillary skeletal width on nasal floor (NF) and maxillary skeletal width on hard palate (HP), maxillary arch width on buccal alveolar crest (BAC) and maxillary arch width on lingual alveolar crest (LAC), palatal vault height, palatal bone thickness, palatal length, surface area, and volume
Results:
The proportion of patients with palatal suture maturity at stages D+E in the maxillary transverse deficiency group (33%, 11/33) was lower than that in the normal maxillary transverse development group (45%, 15/33), showing no statistically significant difference between the two groups. Compared to the maxillary transverse normal group, significant reductions were observed in the maxillary transverse deficiency group for maxillary widths [NF: (67.63 ± 3.74) mm vs. (71.49 ± 5.11) mm; HP: (64.60 ± 3.53) mm vs. (68.40 ± 4.64) mm], dental arch widths [BAC: (56.88 ± 2.25) mm vs. (59.81 ± 2.71) mm; LAC: (33.90 ± 1.89) mm vs. (36.91 ± 2.20) mm], and palatal surface area [(1 170.80 ± 126.48) mm2 vs. (1 264.76 ± 140.10) mm2]. No significant differences were noted in palatal height, bone thickness, length, or volume.
Conclusion
Skeletal Class I malocclusion patients with MTD have narrowed maxillary and dental arch widths, reduced palatal surface area, and delayed midpalatal suture maturation. Early maxillary expansion is recommended to harmonize jaw relationship.
7. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
8.Determination of the Contents of Three Lignans in Dendrobium fimbriatum Hook
Ying-Hua HUANG ; Lin ZHANG ; Jin-Yan LI ; Zhi-Bin LI ; Zhi-Yun LIANG ; Li-E YANG ; Gang WEI ; Yue-Chun HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):207-212
Objective To establish the method for content determination of three lignans of Dendrobium Fimbriatum Hook..Methods The lignans in Dendrobium tasselii were identified by high-performance liquid chromatography/multi-stage mass spectrometry(HPLC-ESI/MSn)coupled with ultraviolet absorption spectrometry(UV)coupled with retention time localization of high-performance liquid chromatography(HPLC).The separation was carried out on a Kromasil 100-5 C18 column(4.6 mm×250 mm,5 μm)using a gradient elution of acetonitrile-0.1%formic acid solution as the mobile phase,the volume flow rate was 0.8 mL·min-1 and the column temperature was 35℃,and the mass spectrometry was performed using an ESI ion source with the data collected in the negative ion mode.The HPLC content was determined on the same column as that of MS analysis,with the mobile phase methanol + acetonitrile(V/V=1∶1)-0.01 mol/L ammonium acetate solution,gradient elution,flow rate of 0.8 mL·min-1,column temperature of 40℃,and detection wavelength of 215 nm.Results Syringaresinol di-O-glucoside and(-)-Syringaresinol 4-O-β-D-glucopyranoside and DL-Syringaresinol were identified from Dendrobium fimbriatum Hook.,and the results of content determination showed that the linear ranges of above three components were respectively 0.1701-3.4020,0.1020-2.0400,0.0403-0.8060 μg(r≥0.9995),the average recoveries were in the range of 97.71%-101.67%,and the relative standard deviations(RSDs)were all less than 3.0%.The contents of Syringaresinol di-O-glucoside and(-)-Syringaresinol 4-O-β-D-glucopyranoside and DL-Syringaresinol in the 10 batches of samples were 0.7779-1.3852,0.0734-0.1966,0.0295-0.1882 mg·g-1.Conclusion This research method can provide a reference basis for the quality evaluation method of Dendrobium fimbriatum Hook..
9.Relationship between lumbar spine development and hip development in children with spastic cerebral palsy
Xinwei ZUO ; Gang LIU ; Huizhong BAI ; Lin XU ; Yi ZHAO ; Jingpei REN ; Chuanyu HU ; Xiaohong MU
Chinese Journal of Tissue Engineering Research 2024;28(8):1247-1252
BACKGROUND:Most scholars now believe that children with cerebral palsy who have severe spinal deformities in early childhood(<15 years of age)may have a higher risk of progression of spinal deformities,which may result from imbalances in movement due to pelvic tilt,pain,etc. OBJECTIVE:To investigate the relationship between lumbar spine development and hip joint development in children with spastic cerebral palsy. METHODS:A retrospective analysis was performed in 102 children with spastic cerebral palsy admitted at Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine from January 2014 to December 2021.All admitted children had X-rays of the pelvic position and the lumbar lateral position.Anteroposterior X-ray of the pelvis was performed to measure femoral head migration percentage,central edge angle,neck-shaft angle,and acetabular index.The sagittal Cobb angle,sacral slope,arch-top distance,and lumbar lordosis index were measured by the lateral X-ray of the lumbar spine.Correlation of the two sets of indicators was further analyzed.All children were divided into normal group,risk group,hip subluxation group and total hip dislocation group according to their femoral head migration percentage,and the differences in lumbar spine indexes between groups were evaluated. RESULTS AND CONCLUSION:Pearson correlation analysis showed that the femoral head migration percentage was moderately positively correlated with sagittal Cobb angle and arch-top distance,and weakly positively correlated with lumbar lordosis index;the central edge angle was moderately negatively correlated with the arch-top distance and weakly negatively correlated with the sagittal Cobb angle;the neck-shaft angle was weakly positively correlated or not correlated with the sagittal Cobb angle and lumbar lordosis index;and the acetabular index was weakly positively correlated with the sagittal Cobb angle and arch-top distance.No statistically significant correlation was found between the remaining indicators.According to the femoral head migration percentage,the children were divided into four groups,including 25 cases in the normal group,41 cases in the risk group,27 cases in the hip subluxation group,and 9 cases in the total hip dislocation group.The sagittal Cobb angle was significantly increased in the risk group,the hip subluxation group and the total hip dislocation group compared with the normal group,showing an increasing trend group by group,and there were significant differences between groups(P<0.05).Compared with the normal group,the lumbar lordosis index in the risk group and the hip subluxation group increased significantly,and there were significant differences between groups(P<0.05).There was an increase trend in the lumbar lordosis index of the total hip dislocation group compared with the normal group.Compared with the normal group,the arch-top distance in the hip subluxation group and the total hip dislocation group increased significantly(P<0.05),and there was a stepwise increasing trend.There was no significant difference in sacral slope between groups.To conclude,the development of the lumbar spine in children with cerebral palsy is closely related to the development of the pelvic hip joint,and the most obvious relationship is between lumbar lordosis and hip dislocation.
10.Sedative and hypnotic effects of zolpidem on insomnia model mice induced by hypoxia
Huanhuan LIANG ; Lin XU ; Gang YU ; Ruibin SU ; Mingyuan LI
Chinese Journal of Pharmacology and Toxicology 2024;38(2):81-88
OBJECTIVE To study the sedative and hypnotic effects of zolpidem and the content of amino acid neurotransmitters in the thalamus and hypothalamus after treatment with zolpidem.METHODS Experiments on the loss of righting reflex(LORR)induced by the upper-threshold dose pentobarbital sodium(50 mg·kg-1,ip)were conducted to establish a hypoxic insomnia model in mice by simulating an altitude of 5500 m.Based on this model,the synergistic effect of zolpidem(0.33,1,3,9 and 27 mg·kg-1,ip)and the subthreshold(20 mg·kg-1,ip)and upper-threshold pentobarbital sodium,as well as the sedative hypnotic effect of zolpidem(10,13,17,20,23,30 and 40 mg·kg-1,ip)were evaluated via the LORR in normoxic and hypoxic environments.One hour after ip given zolpidem,the levels of glutamic acid(Glu)and γ-aminobutyric acid(GABA)in the thalamus and hypothalamus of mice in either environment were determined by the high-performance liquid chromatography(HPLC)with fluorescence detection.RESULTS One-day treatment with hypoxia significantly shortened the duration of LORR induced by the upper-threshold dose pentobarbital sodium.Compared with normoxia vehicle and hypoxia induced insomnia vehicle groups,zolpidem 9 and 27 mg·kg-1 significantly shortened the latency to LORR(P<0.01,P<0.05)and prolonged duration of LORR induced by subthreshold and upper-threshold pentobarbital sodi-um(P<0.01,P<0.05).The median effective dose(ED50)of LORR induced by zolpidem was 16.21 and 20.55 mg·kg-1 in normoxic and hypoxic environments,respectively.The results of neurotransmitter level detection showed that Glu contents in the thalamus and hypothalamus and the ratio of Glu/GABA in the hypothalamus were decreased after treatment with zolpidem 40 mg·kg-1 in a normoxic environment(P<0.01,P<0.05).Compared with the normoxia control group,Glu content and the ratio of Glu/GABA in the hypothalamus were significantly increased after treatment with hypoxia(P<0.01,P<0.05),and zolpidem 40 mg·kg-1 could reverse their elevation.CONCLUSION The sedative-hypnotic effect of zolpidem is weakened in a hypoxic environment,and the effect of zolpidem on the levels of Glu and GABA in the hypothalamus may play an important role in the sedative-hypnotic effect of zolpidem.


Result Analysis
Print
Save
E-mail