1.New steroidal saponins from aerial parts of Paris polyphylla var. chinensis.
Zi-Lu ZHENG ; Xiao-Min TAN ; Liang-Jun GUAN ; Ru WANG ; Liang-Mian CHEN ; Zhi-Min WANG ; Hui-Min GAO
China Journal of Chinese Materia Medica 2023;48(17):4589-4597
The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.
Tandem Mass Spectrometry
;
Saponins/analysis*
;
Liliaceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Rhizome/chemistry*
;
Melanthiaceae
;
Molecular Structure
2.Steroid and triterpenoid saponins from the rhizomes of Paris polyphylla var. stenophylla.
Jinming HU ; Yunyang LU ; Shuxian ZHENG ; Yunyuan TIAN ; Tianyi LI ; Haifeng TANG ; Zhao YANG ; Yang LIU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(10):789-800
Five new saponins, including three steroid saponins, paristenoids A-C (1-3), and two triterpenoid saponins, paristenoids D-E (4-5), along with four known ones (6-9) were isolated from the rhizomes of Paris polyphylla var. stenophylla. The structures of the isolated compounds were identified mainly by detailed spectroscopic analysis, including extensive 1D and 2D NMR, MS, as well as chemical methods. Compound 3 is a new cyclocholestanol-type steroidal saponin with a rare 6/6/6/5/5 fused-rings cholestanol skeleton, and this skeleton has been first found from the genus Paris. The cytotoxicities of the isolated compounds against three human three glioma cell lines (U87MG, U251MG and SHG44) were evaluated, and compound 7 displayed certain inhibitory effect with IC50 values of 15.22 ± 1.73, 18.87 ± 1.81 and 17.64 ± 1.69 μmol·L-1, respectively.
Humans
;
Rhizome/chemistry*
;
Steroids/chemistry*
;
Liliaceae/chemistry*
;
Saponins/chemistry*
;
Triterpenes/analysis*
3.Gene clone and functional identification of sterol glycosyltransferases from Paris polyphylla var. yunnanensis.
Min HE ; Si-Yuan GUO ; Yan YIN ; Chi ZHANG ; Xia-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3774-3785
In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.
Ligands
;
Glycosyltransferases/genetics*
;
Sterols
;
Phylogeny
;
Ascomycota
;
Liliaceae/chemistry*
;
Melanthiaceae
;
Diosgenin
;
Sugars
;
Glucose
;
Uridine Diphosphate
4.Spatial distribution characteristics of metabolities in rhizome of Paris polyphylla var. yunnanensis: based on MALDI-MSI.
Guan-Hua ZHANG ; Xiao-Li LIU ; Chun-Xia MA ; Wen-Han LI ; Xiao WANG
China Journal of Chinese Materia Medica 2022;47(5):1222-1229
In this study, a method was established for in-situ visualization of metabolite distribution in the rhizome of Paris polyphylla var. yunnanensis. To be specific, through matrix-assisted laser desorption/ionization-mass spectrometry imaging(MALDI-MSI), the spatial locations of steroidal saponins, amino acids, organic acids, phytosterols, phytoecdysones, nucleosides, and esters in rhizome of the medicinal plant were directly analyzed, and six unknown compounds with differential distribution in rhizome tissues were identified. The specific procedure is as follows: preparation of rhizome tissue section, matrix screening and optimization, and MALDI-MSI analysis. The results showed that the steroidal saponins were mainly distributed in the central, amino acids in epidermis and cortex, low-molecular-weight organic acids in central epidermis, phytosterols in the epidermis and lateral cortex, the phytoecdysones in epidermis and cortex, nucleosides(uneven distribution) in epidermis and cortex, growth hormones around the epidermis and cortex, particularly outside the cortex, and esters in cortex with unobvious difference among different tissues. In this study, the spatial distribution of meta-bolites in the rhizome of P. polyphylla var. yunnanensis was characterized for the first time. The result can serve as a reference for identifying and extracting endogenous metabolites of P. polyphylla var. yunnanensis, exploring the synthesis and metabolism mechanisms of the metabolites, and evaluating the quality of medicinal materials.
Liliaceae/chemistry*
;
Melanthiaceae
;
Rhizome/chemistry*
;
Saponins/analysis*
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.Research progress of steroidal saponins in Paris polyphylla var. yunnanensis and their microbial transformation.
Di ZHOU ; Qi-Dong PAN ; Xiu-Xiang YAN ; Lu GAO ; Li-Xin YANG
China Journal of Chinese Materia Medica 2022;47(18):4863-4876
Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.
Diosgenin/analysis*
;
Liliaceae/chemistry*
;
Melanthiaceae/chemistry*
;
Rhizome/chemistry*
;
Saponins/analysis*
6.Chemical constituents and antibacterial activities of Aspidistra typica.
Xiao-Xia LIANG ; Lin-Xi KONG ; Wen-Bo FEI ; Min HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):465-470
In the present investigation, we carried a phytochemical study of an ethanol-soluble extract from the root barks of Aspidistra typica Baill., a traditional food and herb medicine, leading to the isolation of four different kinds of compounds, including one benzene substituted coumarin, two organic phosphonic compounds, and one xanthone. The novel benzene substituted coumarin typicacoumarin A (1) was a new type of coumarin, and the two new organic phosphonic compounds, typicalphosphine A (2) and typicalphosphine B (3) were isolated for the first time, and their structures were elucidated by spectral techniques, viz.1D, 2D NMR spectra and HR-ESI-MS. The xanthone compound typicaxanthone A (4) was discovered from nature for the first time. The two new organic phosphonic chlorides (2, 3) showed stronger antibacterial activities, which were comparable to berberine hydrochloride. And typicaxanthone A (4) showed much stronger antibacterial activity against Escherichia coli ATCC-25922 bacterial strain, while typicacoumarin A (1) showed moderate antibacterial activities, weaker than berberine hydrochloride.
Anti-Bacterial Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Bacteria
;
drug effects
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
Liliaceae
;
chemistry
;
Microbial Sensitivity Tests
;
Molecular Structure
;
Nuclear Magnetic Resonance, Biomolecular
;
Plant Roots
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
7.Physiological and biochemical change of Paris seed in after-ripening during variable temperature stratification.
Zhao-ling LI ; Kai TONG ; Shen YAN ; Hua YANG ; Qiao WANG ; Yong-bin TANG ; Meng-sheng DENG ; Meng-liang TIAN
China Journal of Chinese Materia Medica 2015;40(4):629-633
In order to explore the dormancy physiological and biochemical mechanism of Paris seeds, the seed embryo growth courses, and the dynamic change of 5 enzymes, include SOD, POD, CAT, MDH, G-6-PDH were measured during variable temperature stratification. The results indicated that Paris seeds embryo grew quickly after 40 d in warm-stratification (18 ± 1) °C, at the meantime the metabolic activity was significantly strengthened. These facts showed that Paris seeds turned into physiological after-ripening process. After 60-80 d, the morphological embryo after-ripping process basically completed, and the following cold-stratification (4 ± 1) °C furthered Paris seed to finish physiological after-ripening. After 40 d, the activity of MDH decreased while G-6-PDH increased significantly. This showed that the main respiratory pathway of seed changed from TCA to PPP, which benifited breaking seed dormancy. In the whole period of stratification process, the activity variation of SOD and CAT was insignificantly and the activity of POD was enhanced significantly after shifting the seed in cold stratification process. This showed that SOD, CAT had no direct effects on breaking Paris seed dormancy but keeping the seed vigor, while the POD might involve in the process of Paris seed dormancy breaking.
Germination
;
Liliaceae
;
chemistry
;
embryology
;
enzymology
;
Plant Proteins
;
metabolism
;
Seeds
;
chemistry
;
enzymology
;
growth & development
;
Temperature
8.Simultaneous determination of seven bioactive constituents in Smilacis Glabrae Rhizoma by high-performance liquid chromatography.
Shuo XU ; Ming-ying SHANG ; Guang-xue LIU ; Feng XU ; Feng-chun LI ; Xuan WANG ; Shao-qing CAI
China Journal of Chinese Materia Medica 2015;40(3):469-479
This study is to develop an HPLC method for the simultaneous determination of (-)-epicatechin, 5-O-caffeoylshikimic acid, neoisoastilbin, astilbin, neoisoastilbin, isoastilbin and engeletin in Smilacis Glabrae Rhizoma. Samples of Smilacis Glabrae Rhizoma, Heterosmilacis Chinensis Rhizoma and Heterosmilacis Yunnanensis Rhizoma were separated on an Agilent Zorbax SB-C18 column with gradient elution of acetonitrile-0.05% phosphoric acid at a flow rate of 1.0 mL · min(-1). The detected wavelength was set at 230 nm and the column temperature was maintained at 35 °C. The contents of (-)-epicatechin, 5-O-caffeoylshikimic acid, neoastilbin, astilbin, neoisoastilbin, isoastilbin and engeletin in 84 Smilacis Glabrae Rhizoma samples were in the range of trace-1.381, trace-9.913, trace-3.673, 0.6706-27.08, trace-1.181, trace-4.833 and trace-2.754 mg · g(-1), respectively. The established method was used for analysis of common adulterants. The results demonstrated that the contents of (-)-epicatechin in Heterosmilacis Yunnanensis Rhizoma and Heterosmilacis Chinensis Rhizoma were 0.01163-0.06007 mg · g(-1) and 0.01583-0.08585 mg · g(-1), respectively, while the other six constituents were not detected. The method is simple and accurate, and can be used for the quality control of Smilacis Glabrae Rhizoma. The constituents of Heterosmilacis Yunnanensis Rhizoma and Heterosmilacis Chinensis Rhizoma are significantly different from Smilacis Glabrae Rhizoma, and they are not suitable for using as Smilacis Glabrae Rhizoma.
Chromatography, High Pressure Liquid
;
methods
;
Drugs, Chinese Herbal
;
analysis
;
Liliaceae
;
chemistry
;
Rhizome
;
chemistry
9.Saponins isolated from roots of Chlorophytum borivilianum reduce acute and chronic inflammation and histone deacetylase.
Anirudha A LANDE ; Shirishkumar D AMBAVADE ; E-mail: SHIRISHKUMAR77@YAHOO.COM. ; Uma S SWAMI ; Prafulla P ADKAR ; Prashant D AMBAVADE ; Arun B WAGHAMARE
Journal of Integrative Medicine 2015;13(1):25-33
OBJECTIVEThe roots of Chlorophytum borivilanum are used in traditional medicine for the treatment of arthritis and inflammation. The aim of the work was to evaluate the anti-inflammatory activity of isolated saponins from Chlorophytum borivilianum (ISCB).
METHODSThe ISCB was screened using the carrageenan-induced paw edema, histamine-induced paw edema, cotton pellet-induced granuloma, and Freund's adjuvant-induced arthritis in rats at orally administered doses of 3, 10, and 30 mg/kg. Effect of ISCB on histone deacetylase (HDAC) level was measured by the HDAC assay at the highest dose (30 mg/kg).
RESULTSThe results showed that the ISCB significantly reduced carrageenan-induced inflammation, histamine-induced inflammation, cotton pellet-induced granuloma and Freund's adjuvant-induced arthritis in rats. The ISCB at a dose of 30 mg/kg significantly inhibited HDAC level in rat paw tissue.
CONCLUSIONIt is concluded that saponins isolated from roots of C. borivilianum possess anti-inflammatory and anti-arthritic properties. ISCB may act by inhibiting histamine, prostaglandin and HDAC. This suggests that ISCBs have potential for therapeutic use in the treatment of inflammation and arthritis.
Animals ; Anti-Inflammatory Agents ; pharmacology ; Arthritis, Experimental ; drug therapy ; Female ; Histone Deacetylase Inhibitors ; pharmacology ; Histone Deacetylases ; metabolism ; Liliaceae ; chemistry ; Male ; Plant Roots ; chemistry ; Rats ; Rats, Wistar ; Saponins ; pharmacology ; therapeutic use ; toxicity
10.Effects of mycorrhizal colonization and medicine quality of Paris polyphylla var. yunnanensis inoculated by different foreign AM fungi species.
Zhou NONG ; Bo DING ; Yuan FENG ; Wen-hua QI ; Hua ZHANG ; Dong-qin GUO ; Jun XIANG
China Journal of Chinese Materia Medica 2015;40(16):3158-3167
After 28 foreign species of AM fungi were inoculated in sterilized soil, the effects of the AM mycorrhizal colonization and the medicine quality of Paris polyphylla var. yunnanensis were observed by combination of inoculation test in pot at room temperature and instrumental analysis. The results showed that, compared with control group (CK), the inoculation of foreign AM fungi in the soil influenced the spore density, mycorrhizal infection rate, and colonization intensity of AM fungi in root system of P. polyphylla var. yunnanensis. The inoculation of foreign AM fungi enhanced the mycorrhiza viability of P. polyphylla var. yunnanensis by increasing the activity of succinic dehydrogenase (SDH) and alkaline phosphatase (ALP) in intraradical hyphae. The content of single steroid saponin in rhizome of P. polyphylla var. yunnanensis showed variation after P. polyphylla var. yunnanensis was inoculated by different foreign species of AM fungi, which was beneficial for increasing the medicine quality; however, the kinds of steroid saponin showed no difference. In a degree, there was a selectivity of symbiosis between P. polyphylla var. yunnanensis and foreign AM fungi. And we found that the Claroideoglomus claroideum and Racocetra coralloidea were best foreign AM fungi species for cultivating P. polyphylla var. yunnanensis under field condition.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
analysis
;
Fungi
;
classification
;
growth & development
;
Liliaceae
;
chemistry
;
growth & development
;
microbiology
;
Mycorrhizae
;
classification
;
growth & development
;
Plant Roots
;
chemistry
;
growth & development
;
microbiology
;
Quality Control

Result Analysis
Print
Save
E-mail