1.Neuronomodulation of Excitable Neurons.
Yizhang CHEN ; Lin XIAO ; Jian QIU
Neuroscience Bulletin 2024;40(1):103-112
Neuronomodulation refers to the modulation of neural conduction and synaptic transmission (i.e., the conduction process involved in synaptic transmission) of excitable neurons via changes in the membrane potential in response to chemical substances, from spillover neurotransmitters to paracrine or endocrine hormones circulating in the blood. Neuronomodulation can be direct or indirect, depending on the transduction pathways from the ligand binding site to the ion pore, either on the same molecule, i.e. the ion channel, or through an intermediate step on different molecules. The major players in direct neuronomodulation are ligand-gated or voltage-gated ion channels. The key process of direct neuronomodulation is the binding and chemoactivation of ligand-gated or voltage-gated ion channels, either orthosterically or allosterically, by various ligands. Indirect neuronomodulation involves metabotropic receptor-mediated slow potentials, where steroid hormones, cytokines, and chemokines can implement these actions. Elucidating neuronomodulation is of great significance for understanding the physiological mechanisms of brain function, and the occurrence and treatment of diseases.
Ligands
;
Neurons/metabolism*
;
Synaptic Transmission/physiology*
;
Ion Channels/metabolism*
;
Hormones/metabolism*
2.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
3.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
4.Advances in the preclinical and clinical research of proteolysis targeting chimera.
Chinese Journal of Biotechnology 2023;39(9):3615-3627
Proteolysis targeting chimera (PROTAC) refers to heterobifunctional small molecules that can simultaneously bind an E3 ubiquitin ligase and a target protein, enabling specific degradation of the target protein with the aid of the ubiquitin proteasome system. At present, most PROTAC drugs are in the clinical trial stage, and the ligands are mainly non-covalent compounds. PROTAC drugs have the advantage of overcoming drug resistance and degrading "undruggable" target proteins, but non-covalent ligands could lead to the hook effect that undermines drug efficacy. With its own advantages, covalent ligands can avoid the occurrence of this phenomenon, which is of great help to the development of PROTAC. This review summarizes the progress in preclinical and clinical research and application of PROTAC molecules targeting three different classes of protein targets, including intranuclear, transmembrane, and cytosolic proteins. We also offer perspective discussions to provide research ideas and references for the future development of PROTAC.
Proteolysis
;
Proteolysis Targeting Chimera
;
Proteasome Endopeptidase Complex/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Proteins/metabolism*
;
Ligands
5.Mechanism of pregnancy-induced thymus involution and regeneration and medication rules of postpartum prescriptions.
Yao-Ying SHU ; Xie XU ; Zhuo-Wen ZHANG ; Jian-Li GAO
China Journal of Chinese Materia Medica 2023;48(16):4275-4284
In order to prevent the maternal immune defenses to the semi-allogeneic fetus, the maternal body will present a special adaptive immune system change represented by acute thymic involution(ATI) during pregnancy, which can be quickly regenerated after delivery. The ATI during pregnancy is related to the level of sex hormones, which is mainly caused by progesterone. Pregnancy-induced ATI is manifested as the continuous shrinkage of thymus volume, especially the cortex, and the wrinkle and phagocytosis of the subcapsular cortical thymic epithelial cells(cTECs), while other thymic epithelial cells(TECs) remain unchanged. The postpartum thymus is regenerated by the co-mediation of forkhead box N1(FOXN1) as well as its target genes chemokine(C-C motif) ligand 25(CCL25), chemokine(C-X-C motif) ligand 12(CXCL12), δ-like ligand 4(DLL4), cathepsin L(CTSL), and serine protease 16(PRSS16). Once the postpartum thymus is poorly repaired, immune dysfunction of the maternal body and several puerperal diseases will be induced, seriously endangering the survival of the mother and the newborn. In traditional Chinese medicine(TCM), Qi and blood are the cornerstone of pregnancy, and the thymus plays a key role in regulating Qi and blood. The deficiency of Qi and blood during pregnancy and childbirth is closely related to the abnormal ATI during pregnancy and the poor regeneration of the postpartum thymus. Based on this theory, TCM has profound academic ideas and rich clinical experience in postpartum recuperation. Based on the systematic description of the mechanism of ATI regeneration during pregnancy, as well as data mining and analysis of two classic gynecological works of TCM, Wan's Gynecology and Fu Qing-zhu's Treatise on Gynecology, this study found that the commonly used TCM for postpartum included Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Chuanxiong Rhizoma. Among them, Ginseng Radix et Rhizoma, Angelicae Sinensis Radix, and Chuanxiong Rhizoma are high-frequency TCMs with positive effects on postpartum recovery.However, the mechanism of these TCMs in promoting postpartum thymus regeneration needs further investigation.
Female
;
Infant, Newborn
;
Humans
;
Pregnancy
;
Ligands
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Prescriptions
;
Postpartum Period
;
Chemokines
6.Baimai Ointment relieves chronic pain induced by chronic compression of dorsal root ganglion in rats by regulating neuroactive ligand-receptor interaction and HIF-1 signaling pathway.
Fang-Ting ZHOU ; Ying ZONG ; Wu-Qiong HOU ; Sen-Sen LI ; Fei YANG ; Li-Ting XU ; Xia MAO ; Yu-Dong LIU ; Xiao-Hui SU ; Hong-Ye WAN ; Jing-Feng OUYANG ; Qiu-Yan GUO ; Wei-Jie LI ; Zhen WANG ; Chao WANG ; Na LIN
China Journal of Chinese Materia Medica 2023;48(23):6457-6474
The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.
Rats
;
Mice
;
Animals
;
Chronic Pain/metabolism*
;
Rats, Sprague-Dawley
;
Ganglia, Spinal/metabolism*
;
Ligands
;
Signal Transduction
;
Hyperalgesia/metabolism*
;
Drugs, Chinese Herbal
7.Molecular dynamics simulation of force-regulated interaction between glycoprotein Ib α and filamin.
Rencai TAO ; Xubin XIE ; Jianhua WU ; Ying FANG
Journal of Biomedical Engineering 2023;40(5):876-885
In resting platelets, the 17 th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563 rd phenylalanine (PHE 563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.
Filamins/metabolism*
;
Platelet Glycoprotein GPIb-IX Complex/metabolism*
;
Molecular Dynamics Simulation
;
Ligands
;
Protein Binding
;
Blood Platelets/metabolism*
;
von Willebrand Factor/metabolism*
8.CD226, TIGIT and CD96 regulate NK cell function and participate in anti-tumor immunity.
Huiyuan ZHANG ; Ruiyan LIU ; Yusi ZHANG ; Xiaobin LIU ; Lihua CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):852-856
CD226 is an activated receptor on the surface of natural killer (NK) cells. It competes with TIGIT and CD96 to bind to ligands such as CD155 on the surface of tumor cells and mediates the killing function of NK cells. Although TIGIT and CD96 have other binding ligands in the tumor microenvironment, they compete to bind CD115 ligands with higher affinity and inhibit the activity of NK cells, which allows tumor cells to evade killing. Therefore, studying the expression patterns of these three NK cell surface receptors in different tumors and monitoring their binding ability with ligands will help us to explore new tumor treatment strategies. This article reviews the role and mechanism of CD226, TIGIT, CD96 and other NK cell receptor molecules in regulating NK cell function in anti-tumor immune response.
Ligands
;
Receptors, Immunologic
;
Receptors, Natural Killer Cell
;
Killer Cells, Natural
;
Antigens, CD
9.Research progress on the role and clinical application of Siglecs in tumor immunity.
Hui CHEN ; Jialin LU ; Danru WANG ; Lihao SUI ; Sheng XU
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1125-1131
Lectins are proteins responsible for recognizing the signals of sugar molecules in the body. Sialic acid-binding immunoglobulin-like lectins (Siglecs) regulate the innate and adaptive immune responses in the tumor microenvironment by recognizing the glycan structure containing sialic acid and mediating downstream signals through immune receptor tyrosine inhibitory motifs. In recent years, a variety of tumor treatment strategies targeting the sialic acid-Siglecs axis have been introduced, including sialoglycoprotein-mediated drug delivery and antibody mediated inhibition of Siglecs from recognizing tumor surface ligands. In the future, by combining with glycoprotein nanotherapy, antibody therapy and gene therapy, Siglecs can be used to accurately locate tumor targets and release the anti-tumor immunity, so as to achieve the purpose of effective cure of tumors.
Sialic Acid Binding Immunoglobulin-like Lectins/metabolism*
;
N-Acetylneuraminic Acid
;
Immunoglobulins/metabolism*
;
Receptors, Immunologic
;
Ligands
10.Significance of Tim-3 and Its Ligand Galectin-9 in Th1/Th2 Imbalance in Patients with Multiple Myeloma.
Rui ZHANG ; Shuang CHEN ; Ting-Ting LUO ; Jian-Hua QU
Journal of Experimental Hematology 2023;31(6):1764-1770
OBJECTIVE:
To investigate the significance of Tim-3 and Galectin-9 in Th1/Th2 imbalance in patients with multiple myeloma (MM).
METHODS:
55 newly diagnosed MM patients and 20 healthy controls were included. Flow cytometry was used to detect the expression of Tim-3 on CD4+T cells, the proportion of Th1, Th2, Tim-3+Th1 and Tim-3+Th2 cells in peripheral blood. ELISA was used to detect the levels of cytokines IFN-γ and IL-4 in serum, and PCR was used to detect the level of Galectin-9 mRNA. Then the correlations between Galectin-9 mRNA expression and Th-cell subsets and related cytokine levels, as well as the relationship between Tim-3+Th1/Tim-3+Th2 ratio and corresponding clinical features were analyzed.
RESULTS:
Compared with the control group, the expression of Tim-3 on CD4+T cells in peripheral blood of MM patients was significantly increased (P<0.05), the proportions of Tim-3+Th1 cells, Tim-3+Th2 cells and Tim-3+Th1/Tim-3+Th2 ratio in MM patients were also increased (P<0.05), while the proportion of Th1 cells and Th1/Th2 ratio in MM patients were significantly decreased (P<0.05). The level of cytokine IFN-γ and IFN-γ/IL-4 ratio in MM patients were significantly decreased (P<0.05), while the level of cytokine IL-4 was increased (P<0.05). The mRNA levels of Galectin-9 in MM patients were significantly increased (P<0.05). The levels of Galectin-9 mRNA were positively correlated with Tim-3+CD4+T cells (r=0.663), Tim-3+Th2 cells (r=0.492) and IL-4 (r=0.470), while negatively correlated with IFN-γ (r=-0.593). The ratios of Tim-3+Th1/Tim-3+Th2 in MM patients were positively correlated with ISS stage (r=0.511), osteolytic damage (r=0.556) and chromosome abnormality (r=0.632).
CONCLUSION
These results suggest that Tim-3 and Galectin-9 are involved in Th1/Th2 imbalance in MM patients, and the high ratio of Tim-3+Th1/Tim-3+Th2 is associated with poor clinical prognosis.
Humans
;
Cytokines/metabolism*
;
Galectins/metabolism*
;
Hepatitis A Virus Cellular Receptor 2/metabolism*
;
Interleukin-4/metabolism*
;
Ligands
;
Multiple Myeloma/metabolism*
;
RNA, Messenger/metabolism*
;
Th1 Cells/metabolism*
;
Th2 Cells/metabolism*

Result Analysis
Print
Save
E-mail