1.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
4.Establishment of an indirect ELISA for detection of antibodies against Cysticercus pisiformis infection based on TPO18 protein
Zexiang WANG ; Yonglu LUO ; Ping XUE ; Liang CHE ; Yousen WANG ; Huitian GOU ; Xia-Olin SUN
Chinese Journal of Veterinary Science 2024;44(6):1213-1222
Cysticercosis,caused by the larval stage of the tapeworm Taenia pisiformis,known as Cysticercus pisiformis,is a parasitic ailment affecting lagomorphs,particularly domestic rabbits,posing a threat to the rabbit industry and the safety of rabbit meat products.This study aims to i-dentify the distribution of the TPO18 antigen in Cysticercus pisiformis and Taenia pisiformis and establish an indirect enzyme-linked immunosorbent assay(ELISA)for detecting antibodies against rabbit cysticercosis.The research involved the prokaryotic expression of the 18 kDa antigen of rabbit Cysticercus pisiformis and the isolation of soluble TPO18 protein post-purification.Immuni-zing rabbits with the TPO18 protein resulted in the production of polyclonal antibodies with a titer of up to 1∶51 200.Western blot analysis validated the antigenicity of the polyclonal antibodies a-gainst total proteins from rabbit Cysticercus pisiformis,Taenia pisiformis and the recombinant TPO18 protein.Immunohistochemistry revealed the distribution of the TPO18 antigen in rabbit Cysticercus pisiformis and Taenia pisiform is,indicating the effective reactivity of the polyclonal antibodies with total proteins from both parasites and the recombinant TPO18 protein.TPO18 an-tigen in rabbit Cysticercus pisiformis predominantly localized in the germinal layer and the paren-chyma,while in Taenia pisiformis,it was mainly present in the suckers,sucker peripheries,collec-ting duct upper cells,and parenchyma.An indirect ELISA based on the TPO18 antigen was devel-oped using the recombinant antigen,and its technical parameters were optimized.The optimized ELISA conditions included a serum dilution of 1∶100,antigen coating concentration of 5 mg/L,coating for 1 h at 37 ℃ followed by overnight incubation at 4 ℃,blocking with 1%BSA for 60 min at 37 ℃,serum reaction for 60 min,secondary antibody dilution at 1∶1 000,secondary antibody incubation for 60 min,substrate reacting for 15 min,with a cutoff value of 0.295.Sensitivity,speci-ficity,and repeatability tests of the ELISA demonstrated high sensitivity and specificity without cross-reactivity with positive sera of rabbit hemorrhagic disease virus,Hepatic coccidiosis,Eimer-ia stiedae,or Toxoplasma gondii.The intra-and inter-assay coefficients of variation were both less than 7%,indicating excellent repeatability.Application of this ELISA,compared to postmortem ex-amination,on 86 clinical serum samples showed a concordance rate of 97.7%.In conclusion,this study successfully established an indirect ELISA for detecting antibodies against rabbit Cysticercus pisiformis,presenting a novel monitoring approach for assessing rabbit infections with Cysticer-cus pisiformis.
5.Mechanism of effect of rosiglitazone on pancreatic cancer in diabetic mice based on impact of PPARy on glucose transport and metabolism
Rui-Ping HU ; Li-Feng SHANG ; He-Jing WANG ; Hong-Xia CHE ; Ming-Liang WANG ; Huan YANG ; Yuan-Yuan JIN ; Fei-Fei ZHANG ; Jian-Ling ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1325-1334
Aim To explore the mechanism of the effect of rosiglitazone(Rsg)on the pancreatic cancer in diabetic mice based on the impact of PPARγ on glu-cose transport and metabolism.Methods A high-fat and high sugar diet combined with STZ was used to construct T2DM model;T2DM mice and normal mice were subcutaneously injected with PANC02 cells to construct a transplanted tumor model.T2DM trans-planted tumor mice and normal transplanted tumor mice were divided into the following groups:Rsg,PPARy inhibitor(PIN-2),rosiglitazone+PPARγ in-hibitor(Rsg+PIN-2),and normal transplanted tumor mice(NDM)and T2DM transplanted tumor mice(DM)were used as control groups,respectively.Tis-sue samples were collected after intervention.Tissue pathological changes were observed by HE staining.The expressions of Ki67 and PCNA proteins were de-tected by immunohistochemistry.Cell apoptosis was detected by TUNEL assay.The expression of PPARγwas detected by immunofluorescence.The expressions of Glucokinase,GLUT2,Nkx6.1,PDX-1RT-PCR were determined by Western blot.Results Rsg could significantly reduce the tumor mass,pathological chan-ges,Ki67 and PCNA expression of transplanted tumors(P<0.05),increase cell apoptosis and the expression of PPARγ,Glucokinase,GLUT2,Nkx6.1,PDX-1 proteins in NDM and DM mice(P<0.05).PIN-2 could reverse the indicator changes caused by Rsg in NDM and DM mice.However,compared with NDM mice,the above related indicators of the DM group mice were more sensitive to Rsg and PIN-2.Conclu-sions Compared to non-diabetic pancreatic cancer,rosiglitazone can more sensitively inhibit the prolifera-tion of pancreatic cancer with T2DM,induce apopto-sis,and reprogram the metabolism of pancreatic cancer with T2DM by activating PPA Rγ and altering the ex-pression of glucose and lipid metabolism genes,there-by exerting an anti-cancer effect.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.HbA1c comparison and diagnostic efficacy analysis of multi center different glycosylated hemoglobin detection systems.
Ping LI ; Ying WU ; Yan XIE ; Feng CHEN ; Shao qiang CHEN ; Yun Hao LI ; Qing Qing LU ; Jing LI ; Yong Wei LI ; Dong Xu PEI ; Ya Jun CHEN ; Hui CHEN ; Yan LI ; Wei WANG ; Hai WANG ; He Tao YU ; Zhu BA ; De CHENG ; Le Ping NING ; Chang Liang LUO ; Xiao Song QIN ; Jin ZHANG ; Ning WU ; Hui Jun XIE ; Jina Hua PAN ; Jian SHUI ; Jian WANG ; Jun Ping YANG ; Xing Hui LIU ; Feng Xia XU ; Lei YANG ; Li Yi HU ; Qun ZHANG ; Biao LI ; Qing Lin LIU ; Man ZHANG ; Shou Jun SHEN ; Min Min JIANG ; Yong WU ; Jin Wei HU ; Shuang Quan LIU ; Da Yong GU ; Xiao Bing XIE
Chinese Journal of Preventive Medicine 2023;57(7):1047-1058
Objective: Compare and analyze the results of the domestic Lanyi AH600 glycated hemoglobin analyzer and other different detection systems to understand the comparability of the detection results of different detectors, and establish the best cut point of Lanyi AH600 determination of haemoglobin A1c (HbA1c) in the diagnosis of diabetes. Methods: Multi center cohort study was adopted. The clinical laboratory departments of 18 medical institutions independently collected test samples from their respective hospitals from March to April 2022, and independently completed comparative analysis of the evaluated instrument (Lanyi AH600) and the reference instrument HbA1c. The reference instruments include four different brands of glycosylated hemoglobin meters, including Arkray, Bio-Rad, DOSOH, and Huizhong. Scatter plot was used to calculate the correlation between the results of different detection systems, and the regression equation was calculated. The consistency analysis between the results of different detection systems was evaluated by Bland Altman method. Consistency judgment principles: (1) When the 95% limits of agreement (95% LoA) of the measurement difference was within 0.4% HbA1c and the measurement score was≥80 points, the comparison consistency was good; (2) When the measurement difference of 95% LoA exceeded 0.4% HbA1c, and the measurement score was≥80 points, the comparison consistency was relatively good; (3) The measurement score was less than 80 points, the comparison consistency was poor. The difference between the results of different detection systems was tested by paired sample T test or Wilcoxon paired sign rank sum test; The best cut-off point of diabetes was analyzed by receiver operating characteristic curve (ROC). Results: The correlation coefficient R2 of results between Lanyi AH600 and the reference instrument in 16 hospitals is≥0.99; The Bland Altman consistency analysis showed that the difference of 95% LoA in Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180) was -0.486%-0.325%, and the measurement score was 94.6 points (473/500); The difference of 95% LoA in the Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant II) was -0.727%-0.612%, and the measurement score was 89.8 points; The difference of 95% LoA in the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT) was -0.231%-0.461%, and the measurement score was 96.6 points; The difference of 95% LoA in the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT) was -0.469%-0.479%, and the measurement score was 91.9 points. The other 14 hospitals, Lanyi AH600, were compared with 4 reference instrument brands, the difference of 95% LoA was less than 0.4% HbA1c, and the scores were all greater than 95 points. The results of paired sample T test or Wilcoxon paired sign rank sum test showed that there was no statistically significant difference between Lanyi AH600 and the reference instrument Arkray HA8180 (Z=1.665,P=0.096), with no statistical difference. The mean difference between the measured values of the two instruments was 0.004%. The comparison data of Lanyi AH600 and the reference instrument of all other institutions had significant differences (all P<0.001), however, it was necessary to consider whether it was within the clinical acceptable range in combination with the results of the Bland-Altman consistency analysis. The ROC curve of HbA1c detected by Lanyi AH600 in 985 patients with diabetes and 3 423 patients with non-diabetes was analyzed, the area under curve (AUC) was 0.877, the standard error was 0.007, and the 95% confidence interval 95%CI was (0.864, 0.891), which was statistically significant (P<0.001). The maximum value of Youden index was 0.634, and the corresponding HbA1c cut point was 6.235%. The sensitivity and specificity of diabetes diagnosis were 76.2% and 87.2%, respectively. Conclusion: Among the hospitals and instruments currently included in this study, among these four hospitals included Nanjing Maternity and Child Health Care Hospital in Jiangsu Province (reference instrument: Arkray HA8180), Tibetan Traditional Medical Hospital of TAR (reference instrument: Bio-Rad Variant Ⅱ), the People's Hospital of Chongqing Liang Jiang New Area (reference instrument: Huizhong MQ-2000PT), and the Taihe Hospital of traditional Chinese Medicine in Anhui Province (reference instrument: Huizhong MQ-2000PT), the comparison between Lanyi AH600 and the reference instruments showed relatively good consistency, while the other 14 hospitals involved four different brands of reference instruments: Arkray, Bio-Rad, DOSOH, and Huizhong, Lanyi AH600 had good consistency with its comparison. The best cut point of the domestic Lanyi AH600 for detecting HbA1c in the diagnosis of diabetes is 6.235%.
Pregnancy
;
Child
;
Humans
;
Female
;
Glycated Hemoglobin
;
Cohort Studies
;
Diabetes Mellitus/diagnosis*
;
Sensitivity and Specificity
;
ROC Curve
8.A prospective study on the expansion rule of the directional skin and soft tissue expander in abdominal scar reconstruction.
Ji Dong XUE ; Yan LIANG ; Pei Peng XING ; Hai Ping DI ; Jian ZHANG ; Gao Yuan YANG ; Cheng De XIA
Chinese Journal of Burns 2023;39(2):150-157
Objective: To observe the expansion rule of directional skin and soft tissue expander (hereinafter referred to as expander) in abdominal scar reconstruction. Methods: A prospective self-controlled study was conducted. Twenty patients with abdominal scar who met the inclusion criteria and admitted to Zhengzhou First People's Hospital from January 2018 to December 2020 were selected by random number table method, including 5 males and 15 females, aged 12-51 (31±12) years, with 12 patients of type Ⅰ scar and 8 patients of type Ⅱ scar. In the first stage, two or three expanders with rated capacity of 300-600 mL were placed on both sides of the scar, of which at least one expander had rated capacity of 500 mL (as the follow-up observation object). After the sutures were removed, water injection treatment was started, with the expansion time of 4 to 6 months. After the water injection volume reached 2.0 times of the rated capacity of expander, abdominal scar excision+expander removal+local expanded flap transfer repair was performed in the second stage. The skin surface area at the expansion site was measured respectively when the water injection volume reached 1.0, 1.2, 1.5, 1.8, and 2.0 times of the rated capacity of expander, and the skin expansion rate of the expansion site at corresponding multiples of expansion (1.0, 1.2, 1.5, 1.8, and 2.0 times) and adjacent multiple intervals (1.0-1.2, 1.2-1.5, 1.5-1.8, and 1.8-2.0 times) were calculated. The skin surface area of the repaired site at 0 (immediately), 1, 2, 3, 4, 5, and 6 months after operation, and the skin shrinkage rate of the repaired site at different time points (1, 2, 3, 4, 5, and 6 months after operation) and different time periods (0-1, 1-2, 2-3, 3-4, 4-5, and 5-6 months after operation) were calculated. Data were statistically analyzed with analysis of variance for repeated measurement and least significant difference-t test. Results: Compared with the expansion of 1.0 time ((287.6±2.2) cm2 and (47.0±0.7)%), the skin surface area and expansion rate of the expansion site of patients ((315.8±2.1), (356.1±2.8), (384.9±1.6), and (386.2±1.5) cm2, (51.7±0.6)%, (57.2±0.6)%, (60.4±0.6)%, and (60.5±0.6)%) were significantly increased when the expansion reached 1.2, 1.5, 1.8, and 2.0 times (with t values of 46.04, 90.38, 150.14, 159.55, 45.11, 87.83, 135.82, and 118.48, respectively, P<0.05). Compared with the expansion of 1.2 times, the skin surface area and expansion rate of the expansion site of patients were significantly increased when the expansion reached 1.5, 1.8, and 2.0 times (with t values of 49.82, 109.64, 122.14, 144.19, 49.51, and 105.85, respectively, P<0.05). Compared with the expansion of 1.5 times, the skin surface area and expansion rate of the expansion site of patients were significantly increased when the expansion reached 1.8 times (with t values of 38.93 and 39.22, respectively, P<0.05) and 2.0 times (with t values of 38.37 and 38.78, respectively, P<0.05). Compared with the expansion of 1.8 times, the skin surface area and expansion rate of the expansion site of patients both had no statistically significant differences when the expansion reached 2.0 times (with t values of 4.71 and 4.72, respectively, P>0.05). Compared with the expansion of 1.0-1.2 times, the skin expansion rate of the expansion site of patient was significantly increased when the expansion reached 1.2-1.5 times (t=6.95, P<0.05), while the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.5-1.8 and 1.8-2.0 times (with t values of 5.89 and 40.75, respectively, P<0.05). Compared with the expansion of 1.2-1.5 times, the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.5-1.8 and 1.8-2.0 times (with t values of 10.50 and 41.92, respectively, P<0.05). Compared with the expansion of 1.5-1.8 times, the skin expansion rate of the expansion site of patient was significantly decreased when the expansion reached 1.8-2.0 times (t=32.60, P<0.05). Compared with 0 month after operation, the skin surface area of the repaired site of patient at 1, 2, 3, 4, 5, and 6 months after operation was significantly decreased (with t values of 61.66, 82.70, 96.44, 102.81, 104.51, and 102.21, respectively, P<0.05). Compared with 1 month after operation, the skin surface area of the repaired site of patient was significantly decreased at 2, 3, 4, 5, and 6 months after operation (with t values of 37.37, 64.64, 69.40, 72.46, and 72.62, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 32.29, 50.00, 52.67, 54.76, and 54.62, respectively, P<0.05). Compared with 2 months after operation, the skin surface area of the repaired site of patient was significantly decreased at 3, 4, 5, and 6 months after operation (with t values of 52.41, 60.41, 70.30, and 65.32, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 52.97, 59.29, 69.68, and 64.50, respectively, P<0.05). Compared with 3 months after operation, the skin surface area of the repaired site of patient was significantly decreased at 4, 5, and 6 months after operation (with t values of 5.53, 38.00, and 38.52, respectively, P<0.05), while the skin shrinkage rate was significantly increased (with t values of 25.36, 38.59, and 37.47, respectively, P<0.05). Compared with 4 months after operation, the skin surface area (with t values of 41.10 and 50.50, respectively, P>0.05) and skin shrinkage rate (with t values of 48.09 and 50.00, respectively, P>0.05) of the repaired site of patients at 5 and 6 months after operation showed no statistically significant differences. Compared with 5 months after operation, the skin surface area and skin shrinkage rate of the repaired site of patient at 6 months after operation showed no statistically significant differences (with t values of 9.40 and 9.59, respectively, P>0.05). Compared with 0-1 month after operation, the skin shrinkage rate of the repaired site of patient at 1-2, 2-3, 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 13.56, 40.00, 49.21, 53.97, and 57.68, respectively, P<0.05). Compared with 1-2 months after operation, the skin shrinkage rate of the repaired site of patients at 2-3, 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 12.37, 27.72, 30.16, and 31.67, respectively, P<0.05). Compared with 2-3 months after operation, the skin shrinkage rate of the repaired site of patients at 3-4, 4-5, and 5-6 months after operation was significantly decreased (with t values of 33.73, 41.31, and 54.10, respectively, P<0.05). Compared with 3-4 months after operation, the skin shrinkage rate of the repaired site of patient at 4-5 and 5-6 months after operation showed no statistically significant differences (with t values of 10.90 and 23.60, respectively, P>0.05). Compared with 4-5 months after operation, the skin shrinkage rate of the repaired site of patient at 5-6 months after operation showed no statistically significant difference (t=20.90, P>0.05). Conclusions: The expander can effectively expand the abdominal skin, thus repairing the abdominal scar deformity. Maintained expansion for one month after the water injection expansion reaches 1.8 times of the rated capacity of the expander can be set as a phase Ⅱ operation node.
Female
;
Male
;
Humans
;
Cicatrix/surgery*
;
Prospective Studies
;
Tissue Expansion Devices
;
Skin
;
Abdominal Wall
9.Identification and analysis of R1-MYB gene family in Rheum palmatum L. based on full-length transcriptome sequencing
Xia ZHAO ; Yuan-min LI ; Yi-min LI ; Guang-hui XIAO ; Ming-ying ZHANG ; Wen-ping CHENG ; Jing GAO ; Liang PENG ; Gang ZHANG
Acta Pharmaceutica Sinica 2023;58(5):1354-1363
As one kind of v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors, R1-MYB (MYB-related) family plays an important role in plant growth and development, as well as environmental stress and hormone signal transduction. In this study, R1-MYB family genes in
10.Study on the application of model transfer technology in the extraction process of Xiao'er Xiaoji Zhike oral liquid
Xiu-hua XU ; Lei NIE ; Xiao-bo MA ; Xiao-qi ZHUANG ; Jin ZHANG ; Hai-ling DONG ; Wen-yan LIANG ; Hao-chen DU ; Xiao-mei YUAN ; Yong-xia GUAN ; Lian LI ; Hui ZHANG ; Xue-ping GUO ; Heng-chang ZANG
Acta Pharmaceutica Sinica 2023;58(10):2900-2908
The modernization and development of traditional Chinese medicine has led to higher standards for the quality of traditional Chinese medicine products. The extraction process is a crucial component of traditional Chinese medicine production, and it directly impacts the final quality of the product. However, the currently relied upon methods for quality assurance of the extraction process, such as simple wet chemical analysis, have several limitations, including time consumption and labor intensity, and do not offer precise control of the extraction process. As a result, there is significant value in incorporating near-infrared spectroscopy (NIRS) in the production process of traditional Chinese medicine to improve the quality control of the final products. In this study, we focused on the extraction process of Xiao'er Xiaoji Zhike oral liquid (XXZOL), using near-infrared spectra collected by both a Fourier transform near-infrared spectrometer and a portable near-infrared spectrometer. We used the concentration of synephrine, a quality control index component specified by the pharmacopoeia, to achieve rapid and accurate detection in the extraction process. Moreover, we developed a model transfer method to facilitate the transfer of models between the two types of near-infrared spectrometers (analytical grade and portable), thus resolving the low resolution, poor performance, and insufficient prediction accuracy issues of portable instruments. Our findings enable the rapid screening and quality analysis of XXZOL onsite, which is significant for quality monitoring during the traditional Chinese medicine production process.

Result Analysis
Print
Save
E-mail