1.The Neurobiological Mechanisms of Runner’s High
Yun-Teng WANG ; Jia-Qi LIANG ; Wan-Tang SU ; Li ZHAO ; Yan LI
Progress in Biochemistry and Biophysics 2025;52(2):358-373
“Runner’s high” refers to a momentary sense of pleasure that suddenly appears during running or other exercise activities, characterized by anti-anxiety, pain relief, and other symptoms. The neurobiological mechanism of “runner’s high” is unclear. This review summarizes human and animal models for studying “runner’s high”, analyzes the neurotransmitters and neural circuits involved in runner’s high, and elucidates the evidence and shortcomings of researches related to “runner’s high”. This review also provides prospects for future research. Research has found that exercise lasting more than 30 min and with an intensity exceeding 70% of the maximum heart rate can reach a “runner’s high”. Human experiments on “runner’s high” mostly use treadmill exercise intervention, and evaluate it through questionnaire surveys, measurement of plasma AEA, miRNA and other indicators. Animal experiments often use voluntary wheel running intervention, and evaluate it through behavioral experiments such as conditional place preference, light dark box experiments (anxiety), hot plate experiments (pain sensitivity), and measurement of plasma AEA and other indicators. Dopamine, endogenous opioid peptides, endogenous cannabinoids, brain-derived neurotrophic factor, and other substances increase after exercise, which may be related to the “runner’s high”. However, attention should be paid to the functional differences of these substances in the central and peripheral regions, as well as in different brain regions. Moreover, current studies have not identified the targets of the neurotransmitters or neural factors mentioned above, and further in-depth researches are needed. The mesolimbic dopamine system, prefrontal cortex-nucleus accumbens projection, ventral hippocampus-nucleus accumbens projection, red nucleus-ventral tegmental area projection, cerebellar-ventral tegmental area projection, and brain-gut axis may be involved in the regulation of runner’s high, but there is a lack of direct evidence to prove their involvement. There are still many issues that need to be addressed in the research on the neurobiological mechanisms of “runner’s high”. (1) Most studies on “runner’s high” involve one-time exercise, and the characteristics of changes in “runner’s high” during long-term exercise still need to be explored. (2) The using of scales to evaluate subjects lead to the lacking of objective indicators. However, some potential biomarkers (such as endocannabinoids) have inconsistent characteristics of changes after one-time and long-term exercise. (3) The neurotransmitters involved in the formation of the “runner’s high” all increase in the peripheral and/or central nervous system after exercise. Attention should be paid to whether peripheral substances can enter the blood-brain barrier and the binding effects of neurotransmitters to different receptors are completely different in different brain regions. (4) Most of the current evidence show that some brain regions are activated after exercise. Is there a functional circuit mediating “runner’s high” between these brain regions? (5) Although training at a specific exercise intensity can lead to “runner’s high”, most runners have not experienced “runner’s high”. Can more scientific training methods or technological means be used to make it easier for people to experience the “runner’s high” and thus be more willing to engage in exercise? (6) The “runner’s high” and “addiction” behaviors are extremely similar, and there are evidences that exercise can reverse addictive behaviors. However, why is there still a considerable number of people in the sports population and even athletes who smoke or use addictive drugs instead of pursuing the “pleasure” brought by exercise? Solving the problems above is of great significance for enhancing the desire of exercise, improving the clinical application of neurological and psychiatric diseases through exercise, and enhancing the overall physical fitness of the population.
2.Mechanisms by which microgravity causes osteoporosis
Dejian XIANG ; Xiaoyuan LIANG ; Shenghong WANG ; Changshun CHEN ; Cong TIAN ; Zhenxing YAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(10):2132-2140
BACKGROUND:The imbalance between bone resorption and bone formation in microgravity environments leads to significant bone loss in astronauts.Current research indicates that bone loss under microgravity conditions is the result of the combined effects of various cells,tissues,and systems. OBJECTIVE:To review different biological effects of microgravity on various cells,tissues,or systems,and summarize the mechanisms by which microgravity leads to the development of osteoporosis. METHODS:Databases such as PubMed,Web of Science,and the Cochrane Database were searched for relevant literature from 2000 to 2023.The inclusion criteria were all articles related to tissue engineering studies and basic research on osteoporosis caused by microgravity.Ultimately,85 articles were included for review. RESULTS AND CONCLUSION:(1)In microgravity environment,bone marrow mesenchymal stem cells tend to differentiate more into adipocytes rather than osteoblasts,and hematopoietic stem cells in this environment are more inclined to differentiate into osteoclasts,reducing differentiation into the erythroid lineage.At the same time,microgravity inhibits the proliferation and differentiation of osteoblasts,promotes apoptosis of osteoblasts,alters cell morphology,and reduces the mineralization capacity of osteoblasts.Microgravity significantly increases the number and activity of osteoclasts.Microgravity also hinders the differentiation of osteoblasts into osteocytes and promotes the apoptosis of osteocytes.(2)In a microgravity environment,the body experiences changes such as skeletal muscle atrophy,microvascular remodeling,bone microcirculation disorders,and endocrine disruption.These changes lead to mechanical unloading in the bone microenvironment,insufficient blood perfusion,and calcium cycle disorders,which significantly impact the development of osteoporosis.(3)At present,the mechanism by which microgravity causes osteoporosis is relatively complex.A deeper study of these physiological mechanisms is crucial to ensuring the health of astronauts during long-term space missions,and provides a theoretical basis for the prevention and treatment of osteoporosis.
3.Formulation and interpretation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage(Reference)
Lijuan YANG ; Quanzhi LI ; Kejing WANG ; Xiaofen YE ; Zining WANG ; Xuelian YAN ; Liang HUANG ; Juan LI ; Jiancun ZHEN
China Pharmacy 2025;36(11):1301-1305
The writing of pharmacist-managed clinics documents (hereinafter referred to as “outpatient medication record”) is a necessary part of pharmacist-managed clinics service. Outpatient medication record is an important carrier to reflect the quality of pharmacist-managed clinics service. The Chinese Hospital Association Pharmaceutical Specialized Committee was entrusted by the Pharmaceutical Administration Department of the National Health Commission to lead the formulation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage (Reference) (hereinafter referred to as Guidelines) according to the compilation method of group standards and the technical route of “documentation combing→framework establishment→draft writing→opinion collection→Guidelines formation”. The Guidelines standardizes the basic requirements of pharmacist-managed clinics record management and the basic content of record, and provides a general template and two specialized templates including pregnant and lactating pharmacist-managed clinics record template and cough and asthma pharmacist-managed clinics record template, which provides a reference for medical institutions to write pharmacist-managed clinics record. This paper introduces the formulation process of Guidelines and analyzes the key contents of Guidelines, which is helpful for the application practice of Guidelines and further improves the quality of pharmacist-managed clinics work.
4.Features of intestinal flora in patients with nonalcoholic fatty liver disease and Helicobacter pylori infection
Jingjing LIU ; Qike WANG ; Zhiqiang MA ; Yan LIANG ; Renping LI
Journal of Clinical Hepatology 2025;41(5):862-871
ObjectiveTo investigate the features and mechanism of action of intestinal flora in patients with nonalcoholic fatty liver disease (NAFLD) and Helicobacter pylori (HP) infection by comparing the changes in intestinal flora between the healthy population, the patients with HP infection, the patients with NAFLD, and the patients with NAFLD and HP infection. MethodsThis study was conducted among the 19 patients with NAFLD (NAFLD group), 19 patients with HP infection (HP group), and 19 patients with NAFLD and HP infection (NAFLD+HP group) who were admitted to The Second Affiliated Hospital of Henan University of Science and Technology from March 1, 2023 to April 30, 2024, and 20 individuals undergoing physical examination were enrolled as control group. Fecal samples were collected, total DNA was extracted for PCR amplification, and 16S rDNA sequencing was performed to compare the features of intestinal flora between the four groups. An analysis of variance was used for comparison of continuous data between multiple groups, and the chi-square test was used for comparison of categorical data between multiple groups. The Mann-Whitney U test or the Kruskal-Wallis H test was used for comparison of the species in intestinal flora. ResultsThe NAFLD+HP group showed a tendency of reduction in flora abundance compared with the other three groups. There was a significant difference in flora distribution between the NAFLD+HP group and the NAFLD group and between the NAFLD group and the control group (P<0.05). At the phylum level, the top three species in the NAFLD+HP group were Firmicutes (59.94%), Proteobacteria (17.00%), and Actinobacteria (14.75%), with an increase in the proportion of Proteobacteria and a reduction in the proportion of Actinobacteria compared with the other three groups. At the genus level, the top five dominant bacteria in the NAFLD+HP group were Bifidobacterium, Streptococcus, Escherichia-Shigella, Agathobacter, and Ruminococcus gnavus_group. Compared with the NAFLD group, the NAFLD+HP group had increases in the abundance of Streptococcus, Veillonella, and Rothia and reductions in the abundance of Dialister and Ruminococcus toraues_group. Compared with the HP group, the NAFLD+HP group had reductions in the abundance of Collinsella, Subdoligranulum, Catenibacterium, and Porphyromonas and increases in the abundance of Citrobacter and Olsenella (all P<0.05). ConclusionPatients with NAFLD and HP infection have changed in intestinal flora. These flora may be the intestinal microecological factors for HP infection in promoting the development and progression of NAFLD.
5.Analysis of Ancient and Modern Literature of Xiaoyaosan and Examination of Its Key Information
Zhe WANG ; Jialei CAO ; Lyuyuan LIANG ; Yiping WANG ; Chen CHEN ; Weixiao LI ; Bingqi WEI ; Yinli LI ; Yongbin YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):227-237
First recorded in an official medical book from the Northern Song Dynasty called Taiping Huimin Heji Ju Fang (Prescriptions of the Bureau of Taiping People's Welfare Pharmacy), Xiaoyaosan has been developed and refined over generations and is preserved to this day. It specializes in soothing the liver,resolving stagnation,fortifying the spleen,and nourishing blood. In this study,ancient traditional Chinese medicine (TCM) books and contemporary studies were reviewed to obtain information on Xiaoyaosan using bibliometrics,including its historical development,dosage,origin,processing methods,decoction dosage,and ancient and modern indications. Furthermore,a question regarding the presence of Zingiberis Rhizoma Recens and Menthae Haplocalycis Herba in Xiaoyaosan was investigated,and a table of key information on Xiaoyaosan was compiled,providing references for developing Xiaoyaosan preparations. According to the weight and measurement system of the Song dynasty,the contemporary equivalent formulation of the decocted Xiaoyaosan consists of 20.65 g of Glycyrrhizae Radix et Rhizoma and 41.3 g of Angelica Sinensis Radix,Poria,Paeoniae Radix Alba,Atractylodis Macrocephalae Rhizoma,and Bupleuri Radix. The formulation is processed to obtain a mixed powder with a particle size of 10 mesh. For each dose,8.25 g of the mixed powder is combined with 1 g of unprocessed Zingiberis Rhizoma Recens and 0.62 g of Menthae Haplocalycis Herba in 300 mL of water. The mixture is decocted until the volume reaches 210 mL,and the residue is then removed,with no specific timing required for administration. After the processing,each dose consists of approximately 0.75 g of Glycyrrhizae Radix et Rhizoma and 1.50 g of Radix Angelica Sinensis,Poria,Paeoniae Radix Alba,Atractylodis Macrocephalae Rhizoma,and Bupleuri Radix. Ancient medical literature shows that Xiaoyaosan primarily treats blood deficiency and overstrain,specifically for symptoms including heat caused by blood deficiency and fatigue,irregular menstruation,headache,eye soreness,pain in the ribs and limbs,and emaciation and bone steaming. In the Qing Dynasty,ZHANG Lu clearly proposed the pathogenesis of liver depression,and since then,the use of Xiaoyaosan in treating various syndromes associated with liver depression has been highly praised by physicians in the Qing dynasty and modern times. Xiaoyaosan has a wide application in modern clinical practices,involving digestive diseases,gynecological diseases,psychological diseases,nervous system diseases,and otorhinolaryngologic diseases. Moreover,it is most commonly used to treat depression and other diseases complicated with depression,hyperplasia of the mammary gland,etc. The key information on Xiaoyaosan and its clinical applications in ancient and modern times investigated in the study could serve as a scientific reference for in-depth research and extended clinical applications of the prescription.
6.Exploring Mechanism of Hei Xiaoyaosan Regulating PI3K/Akt Pathway to Improve Learning and Memory Ability of Insomnia Rats with Liver Depression Syndrome Based on Transcriptomics
Jiamin LIU ; Yale WANG ; Hai HUANG ; Yue LI ; Xin FAN ; Pengpeng LIANG ; Shizhao ZHANG ; Mei YAN ; Guiyun LI ; Hongyan WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):114-125
ObjectiveBased on transcriptomics, to explore the mechanism of Hei Xiaoyaosan regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway to improve the learning and memory ability of insomnia rats with liver depression syndrome. MethodsSixty 8-week-old male SD rats were randomly divided into the blank group, model group, eszopiclone group (0.09 mg·kg-1), and low, medium, and high dose groups of Hei Xiaoyaosan (3.82, 7.65, 15.30 g·kg-1), with ten rats in each group. Except for the blank group, the other groups were induced insomnia rat model with liver depression by chronic restraint, tail clamping stimulation and intraperitoneal injection of p-chlorophenylalanine (PCPA). Each treatment group received intragastric administration according to the specified dosage, once a day for 14 consecutive days. The pentobarbital sodium cooperative sleep test, open field test, and Morris water maze test were used to test the sleep quality, depressive-like behavior, and learning and memory abilities of rats. Additionally, enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and nitric oxide (NO) in hippocampus. Hematoxylin-eosin (HE) staining was performed to observe pathological changes of the hippocampal tissue, while terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was used to evaluate apoptosis of hippocampal neurons. Transcriptomic sequencing technology was employed to identify differentially expressed genes in hippocampus between the model group and the blank group, as well as between the medium-dose group of Hei Xiaoyaosan and the model group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the intersecting genes. Subsequently, the enriched key genes and signaling pathways were analyzed and verified. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was utilized to assess the mRNA expression levels of phosphatase and tensin homolog (PTEN), B-cell lymphoma-2 (Bcl-2)-like protein 11 (BCL2L11), and mitogen-activated protein kinase 1 (MAPK1) in hippocampus, and Western blot was employed to evaluate the protein expressions of PI3K, phosphorylation (p)-PI3K, Akt, p-Akt, Bcl-2, Bcl-2-associated X protein (Bax), and cleaved Caspase-3 in the same tissue. ResultsCompared with the blank group, the model group exhibited a reduction in body weight, an increase in sleep latency, and a decrease in sleep duration (P<0.01). Additionally, rats showed obvious depression-like behavior, and their learning and memory abilities decreased. Furthermore, the contents of 5-HT, GABA, NO, BDNF and GDNF in hippocampus decreased (P<0.01). Histological examination revealed a disorganized cell arrangement in the CA1 region of the hippocampus, characterized by irregular cell shapes, a reduced cell count, deeply stained and pyknotic nuclei, increased vacuolar degeneration, and an elevated apoptosis rate (P<0.01). Compared with the model group, the body weight of the high and medium dose groups of Hei Xiaoyaosan increased, the sleep latency shortened and the sleep time prolonged (P<0.05, P<0.01). Additionally, depression-like behavior and learning and memory abilities of rats were significantly improved, the levels of 5-HT, GABA, NO, BDNF and GDNF in the hippocampus increased (P<0.05, P<0.01). These interventions also ameliorated pathological damage in the hippocampal CA1 area and reduced the apoptosis of hippocampal neurons (P<0.01). Transcriptomic sequencing results indicated that Hei Xiaoyaosan might exert a therapeutic effect by regulating PI3K/Akt pathway through key mRNAs such as PTEN, BCL2L11, and MAPK1. The roles of these key mRNAs and proteins within PI3K/Akt pathway were further validated. In comparison to the blank group, the expression levels of PTEN, BCL2L11 and MAPK1 mRNA in the hippocampus of rats in the model group were increased (P<0.01), while the protein expression levels of p-PI3K, p-Akt and Bcl-2 were decreased (P<0.01), and the protein expression levels of PTEN, Bax and cleaved Caspase-3 were increased (P<0.01). Compared with the model group, the high-dose and medium-dose groups of Hei Xiaoyaosan could down-regulate the expressions of PTEN, BCL2L11 and MAPK1 mRNAs (P<0.01), up-regulate the expressions of p-PI3K, p-Akt and Bcl-2 proteins (P<0.01), and down-regulate the protein expressions of PTEN, Bax and cleaved Caspase-3 (P<0.05, P<0.01). ConclusionHei Xiaoyaosan may regulate PI3K/Akt signaling pathway by down-regulating expressions of key genes such as PTEN, BCL2L11 and MAPK1, and thus improve the learning and memory abilities of insomnia rats with liver depression syndrome.
7.Distribution and drug resistance characteristics of Acinetobacter baumannii in the environment of a general hospital in Xuhui District of Shanghai from 2018 to 2023
Yan WANG ; Jing WANG ; Yuqing YAO ; Junjie ZHANG ; Zhiyao TENG ; Bingqing YAN ; Congcong ZHANG ; Lufang JIANG ; Liang TIAN
Shanghai Journal of Preventive Medicine 2025;37(6):476-483
ObjectiveTo analyze the distribution, drug resistance characteristics, and changing trends of Acinetobacter baumannii (AB) isolated from environmental surfaces and healthcare workers’ hands in a grade Ⅱ level A general hospital in Xuhui District of Shanghai from 2018 to 2023, and to provide reference for infection control in the hospital. MethodsEnvironmental samples were collected quarterly from critical surfaces and healthcare workers’ hands in the intensive care unit (ICU), geriatrics, and respiratory departments from 2018 to 2023. Clinical isolates were obtained from all patients with AB infections in ICU, geriatrics, respiratory department, rehabilitation department, infectious diseases department, emergency department, cardiology department, and orthopedics of the hospital from 2018 to 2023. Retrospective analyses were performed on AB detection rates, strain origins, resistance rates to commonly used antimicrobial agents, and resistance gene features, comparing the antimicrobial resistance between clinically isolated strains and environmentally isolated strains. ResultsFrom 2018 to 2023, a total of 1 416 samples were collected from the hospital and a total of 272 strains of AB were detected, with a positive detection rate of 19.21%. The detection rate gradually decreased year-on-year (χ2trend=45.290, P<0.001). The majority of samples originated from patient-contacted items (34.56%, 94/272), followed by shared items (26.84%, 73/272) and healthcare worker-contacted items (15.07%, 41/272). From 2018 to 2023, the resistance rate of AB on environmental surfaces and healthcare workers’ hands to commonly tested antibiotics in the hospital ranged from 10% to 40%. The resistance rates to cefotaxime (42.52%) and piperacillin (38.58%) were relative high, while the resistance to polymyxin E (1.57%), polymyxin B (2.36%), and doxycycline (3.94%) maintained low. The annual fluctuations in resistance to cefotaxime, piperacillin, ceftriaxone, tobramycin, doxycycline, minocycline and cotrimoxazole were statistically significant (all P<0.05). There were statistically significant differences in the resistance of clinical and environmental isolates to ampicillin/sulbactam, cefepime, ceftazidime, subamphetamine, meropenem, piperacillin, aztreonam, gentamicin, tobramycin, minocycline, ciprofloxacin, levofloxacin, and cotrimoxazole in the hospital from 2018 to 2023 (all P<0.05). The resistance rate of clinical isolates was generally high, especially to β-lactam and quinolone drugs, which were mostly above 80% [such as cefepime (93.86%), cefotaxime (97.37%), imipenem (98.25%), and ciprofloxacin (99.12%)]. The resistance rate of environmental isolated strains to similar antibiotics was relatively lower, mostly concentrated at 10%‒30%. The whole-genome sequencing of 34 carbapenem-resistant Acinetobacter baumannii (CRAB) strains isolated from the hospital environment in 2023 revealed that the main resistance mechanism was overexpression of efflux pumps (51.97%), followed by changes in target sites (32.46%). Among the 34 CRAB strains, carbapenem resistance genes OXA-23 and OXA-51 were detected in 6 strains (17.65%), while genes such as KPC, IMP, VIM, and SIM were not detected. ConclusionFrom 2018 to 2023, AB in the hospital environment exhibited high resistance rates to certain antimicrobial agents and carried multiple resistance genes, indicating a potential transmission risk. It is necessary to further strengthen bacterial resistance monitoring and hospital infection control, and use antibiotics reasonably.
8.Study on the functions of ERG3 in Candida albicans
Zi YE ; Ruina WANG ; Jiacun LIU ; Shiyun YANG ; Chan LIANG ; Lan YAN
Journal of Pharmaceutical Practice and Service 2025;43(9):431-435
Objective To investigate the biological functions of the ERG3 gene in Candida albicans and its potential value in antifungal therapy. Methods The ERG3 null mutant was constructed by the CRISPR/Cas9 technology. Gas chromatography-mass spectrometry, microbroth dilution method, hyphal induction and mouse systemic infection models were carried out to evaluate sterol metabolism, drug susceptibility, hyphal formation ability and pathogenicity in C. albicans. Results The disruption of the ERG3 gene led to disordered sterol metabolism in C. albicans with a significant increased level of episterol, 14α-methylfecosterol and ergosta-7,22-dienol. The ERG3 null mutant exhibited significantly reduced susceptibility to antifungal azole and polyene drugs, which suggested that ERG3 involve in regulating drug resistance. Although the disruption of ERG3 inhibited hyphal growth and biofilm formation, it did not significantly alter the pathogenicity of the strain in a mouse model of systemic fungal infection. Conclusion The ERG3 gene was a key regulator in the ergosterol synthesis pathway in C. albicans. Its deletion induced multi-drug resistance by reshaping sterol metabolism, while pathogenicity maintenance depended on compensatory mechanisms. This study provided critical insights for developing antifungal drugs targeting sterol metabolism and overcoming drug resistance.
9.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
Abstract
Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.
10.Prediction of lymph node metastasis in invasive lung adenocarcinoma based on radiomics of the primary lesion, peritumoral region, and tumor habitat: A single-center retrospective study
Hongchang WANG ; Yan GU ; Wenhao ZHANG ; Guang MU ; Wentao XUE ; Mengen WANG ; Chenghao FU ; Liang CHEN ; Mei YUAN ; Jun WANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1079-1085
Objective To predict the lymph node metastasis status of patients with invasive pulmonary adenocarcinoma by constructing machine learning models based on primary tumor radiomics, peritumoral radiomics, and habitat radiomics, and to evaluate the predictive performance and generalization ability of different imaging features. Methods A retrospective analysis was performed on the clinical data of 1 263 patients with invasive pulmonary adenocarcinoma who underwent surgery at the Department of Thoracic Surgery, Jiangsu Province Hospital, from 2016 to 2019. Habitat regions were delineated by applying K-means clustering (average cluster number of 2) to the grayscale values of CT images. The peritumoral region was defined as a uniformly expanded area of 3 mm around the primary tumor. The primary tumor region was automatically segmented using V-net combined with manual correction and annotation. Subsequently, radiomics features were extracted based on these regions, and stacked machine learning models were constructed. Model performance was evaluated on the training, testing, and internal validation sets using the area under the receiver operating characteristic curve (AUC), F1 score, recall, and precision. Results After excluding patients who did not meet the screening criteria, a total of 651 patients were included. The training set consisted of 468 patients (181 males, 287 females) with an average age of (58.39±11.23) years, ranging from 29 to 78 years, the testing set included 140 patients (56 males, 84 females) with an average age of (58.81±10.70) years, ranging from 34 to 82 years, and the internal validation set comprised 43 patients (14 males, 29 females) with an average age of (60.16±10.68) years, ranging from 29 to 78 years. Although the habitat radiomics model did not show the optimal performance in the training set, it exhibited superior performance in the internal validation set, with an AUC of 0.952 [95%CI (0.87, 1.00)], an F1 score of 84.62%, and a precision-recall AUC of 0.892, outperforming the models based on the primary tumor and peritumoral regions. Conclusion The model constructed based on habitat radiomics demonstrated superior performance in the internal validation set, suggesting its potential for better generalization ability and clinical application in predicting lymph node metastasis status in pulmonary adenocarcinoma.

Result Analysis
Print
Save
E-mail