1.Status Analysis of Acupoint Selection and Stimulation Parameters Application for Acupuncture Treatment of Functional Dyspepsia
Siyi ZHENG ; Han ZHANG ; Yang YU ; Chuanlong ZHOU ; Yan SHI ; Xiaohu YIN ; Shouhai HONG ; Na NIE ; Jianqiao FANG ; Yi LIANG
Journal of Traditional Chinese Medicine 2025;66(12):1293-1299
Based on commonly used acupoints in the clinical acupuncture treatment of functional dyspepsia (FD), this study systematically analyzes the therapeutic differences and synergistic effects between local and distal point selection. It also examines the suitability of primary acupoint selection for different FD subtypes, postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS). The findings suggest that a combination of local and distal acupoints may be more appropriate as primary points for PDS, whereas local acupoints alone may be more suitable for EPS. Additionally, the study explores the impact of various factors, such as stimulation techniques, needling order, intensity or stimulation parameters, and depth, on the efficacy of acupuncture. It concludes that the intrinsic properties of acupoints are the primary determinants of therapeutic direction. Other factors mainly influence the magnitude rather than the direction of the effect. Future research may further investigate how different acupoint combinations, local versus distal, affect the treatment outcomes of FD subtypes, providing new insights for clinical acupuncture prescriptions.
2.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
3.Prediction of suitable habitats of Phlebotomus chinensis in Gansu Province based on the Biomod2 ensemble model
Dawei YU ; Yandong HOU ; Aiwei HE ; Yu FENG ; Guobing YANG ; Chengming YANG ; Hong LIANG ; Hailiang ZHANG ; Fan LI
Chinese Journal of Schistosomiasis Control 2025;37(3):276-283
Objective To investigate the suitable habitats of Phlebotomus chinensis in Gansu Province, so as provide insights into effective management of mountain-type zoonotic visceral leishmaniasis (MT-ZVL). Methods The geographical coordinates of locations where MT-ZVL cases were reported were retrieved in Gansu Province from 2015 to 2023, and data pertaining to 26 environmental variables were captured, including 19 climatic variables (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of the warmest month, minimum temperature of the coldest month, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, precipitation of the warmest quarter, and precipitation of the coldest quarter), five geographical variables (elevation, annual normalized difference vegetation index, vegetation type, landform type and land use type), and two population and economic variables (population distribution and gross domestic product). Twelve species distribution models were built using the biomod2 package in R project, including surface range envelope (SRE) model, generalized linear model (GLM), generalized additive model (GAM), multivariate adaptive regression splines (MARS) model, generalized boosted model (GBM), classification tree analysis (CTA) model, flexible discriminant analysis (FDA) model, maximum entropy (MaxEnt) model, optimized maximum entropy (MAXNET) model, artificial neural network (ANN) model, random forest (RF) model, and extreme gradient boosting (XGBOOST) model. The performance of 12 models was evaluated using the area under the receiver operating characteristic curve (AUC), true skill statistics (TSS), and Kappa coefficient, and single models with high performance was selected to build the optimal ensemble models. Factors affecting the survival of Ph. chinensis were identified based on climatic, geographical, population and economic variables. In addition, the suitable distribution areas of Ph. chinensis were predicted in Gansu Province under shared socioeconomic pathway 126 (SSP126), SSP370 and SSP585 scenarios based on climatic data during the period from 1991 to 2020, from 2041 to 2060 (2050s), and from 2081 to 2100 (2090s) . Results A total of 11 species distribution models were successfully built for prediction of potential distribution areas of Ph. chinensis in Gansu Province, and the RF model had the highest predictive accuracy (AUC = 0.998). The ensemble model built based on the RF model, XGBOOST model, GLM, and MARS model had an increased predictive accuracy (AUC = 0.999) relative to single models. Among the 26 environmental factors, precipitation of the wettest quarter (12.00%), maximum temperature of the warmest month (11.58%), and annual normalized difference vegetation index (11.29%) had the greatest contributions to suitable habitats distribution of Ph. sinensis. Under the climatic conditions from 1991 to 2020, the potential suitable habitat area for Ph. chinensis in Gansu Province was approximately 5.80 × 104 km2, of which the highly suitable area was 1.42 × 104 km2, and primarily concentrated in the southernmost region of Gansu Province. By the 2050s, the unsuitable and lowly suitable areas for Ph. chinensis in Gansu Province had decreased by varying degrees compared to that of 1991 to 2020 period, while the moderately and highly suitable areas exhibited expansion and migration. By the 2090s, under the SSP126 scenario, the suitable habitat area for Ph. chinensis increased significantly, and under the SSP585 scenario, the highly suitable areas transformed into extremely suitable areas, also showing substantial growth. Future global warming is conducive to the survival and reproduction of Ph. chinensis. From the 2050s to the 2090s, the highly suitable areas for Ph. chinensis in Gansu Province will be projected to expand northward. Under the SSP126 scenario, the suitable habitat area for Ph. chinensis in Gansu Province is expected to increase by 194.75% and 204.79% in the 2050s and 2090s, respectively, compared to that of the 1991 to 2020 period. Under the SSP370 scenario, the moderately and highly suitable areas will be projected to increase by 164.40% and 209.03% in the 2050s and 2090s, respectively, while under the SSP585 scenario, they are expected to increase by 195.98% and 211.66%, respectively. Conclusions The distribution of potential suitable habitats of Ph. sinensis gradually shifts with climatic changes. Intensified surveillance and management of Ph. sinensis is recommended in central and eastern parts of Gansu Province to support early warning of MT-ZVL.
4.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
5.Impact of inhaled corticosteroid use on elderly chronic pulmonary disease patients with community acquired pneumonia.
Xiudi HAN ; Hong WANG ; Liang CHEN ; Yimin WANG ; Hui LI ; Fei ZHOU ; Xiqian XING ; Chunxiao ZHANG ; Lijun SUO ; Jinxiang WANG ; Guohua YU ; Guangqiang WANG ; Xuexin YAO ; Hongxia YU ; Lei WANG ; Meng LIU ; Chunxue XUE ; Bo LIU ; Xiaoli ZHU ; Yanli LI ; Ying XIAO ; Xiaojing CUI ; Lijuan LI ; Xuedong LIU ; Bin CAO
Chinese Medical Journal 2024;137(2):241-243
6. Histamine 1 receptor agonist inhibits LPS-induced immune responses in astrocytes via Akt/NF-KB signaling pathway
Jia-Wen XU ; Jia-Hong SHEN ; Yu-Xin WEN ; Jian-Liang SUN
Chinese Pharmacological Bulletin 2024;40(2):317-323
Aim To investigate the effect of histamine H, receptor (HjR) on the immune responses in astrocytes induced by lipopolysaccharide (LPS) and the regulatory mechanism of its signaling pathway. Methods LPS was used to establish an in vitro astrocyte inflammation model. Rat primary astrocytes were divided into the control group, LPS group, LPS + Hj R agonist group (2-pyridylethlamine, Pyri), and HjR agonist group. Astrocytes were treated with Pyri 100 p,mol • L~ for 1 h, then stimulated with LPS at 100 p,g • L~ for 24 h. Cell viability was measured using the CCK-8 assay. The expression of GFAP and HjR was detected by immunofluorescence. Glial morphological changes were observed under a microscope. The levels of proinflammatory mediators (TNF-a and IL-6) were detected by ELISA. The protein expressions of p-Akt, Akt, p-NF-KB p65, and NF-KB p65 were detected by Western blot. Results Compared with the control group, more activated astrocytes with fewer cell processes and branches were observed in the LPS group. Besides, LPS enhanced the GFAP expression level, reduced the H,R expression level and stimulated the production of TNF-a and IL-6 from astrocytes. Pre treatment with Pyri for 1 h ameliorated the glial morphological changes stimulated by LPS, inhibited LPS-induced upregulation of GFAP level and the inflammatory factors secretion. In addition, LPS stimulated astrocytes showed a higher phosphorylation of Akt and NF-KB p65, which was also ameliorated by Pyri. Conclusions H, R agonist can inhibit LPS-induced astrocyte activation and inflammatory factor secretion, and the Akt/NF-KB signaling pathway may be an important pathway for the involvement of H,R in immune regulation.
7.Recent advances in lamellar liquid crystal emulsification methods encapsulating natural active substances for functional cosmetics
Yi ZHANG ; Wei CHEN ; Yan-qi HAN ; Qian-wen SUN ; Yue GAO ; Jun YE ; Hong-liang WANG ; Li-li GAO ; Yu-ling LIU ; Yan-fang YANG
Acta Pharmaceutica Sinica 2024;59(2):350-358
Due to the high similarity with the lipid layer between human skin keratinocytes, functional cosmetics with layered liquid crystal structure prepared by liquid crystal emulsification technology encapsulating natural active substances have become a hot research topic in recent years. This type of functional cosmetic often has a fresh and natural skin feel, excellent skin barrier repair function and efficient moisturizing effect, etc., showing great potential in cosmetic application. However, the present research on the application of liquid crystal emulsification technology to functional cosmetics is still in the initial stage, and there are fewer relevant reports with reference values. Based on the mentioned above, this review provides a comprehensive summary of functional cosmetics with layered liquid crystal structures prepared by liquid crystal emulsification technology from the following aspects: the structure of human skin, the composition of lamellar liquid crystal, the advantages of liquid crystal emulsification technology containing natural active substances used in the field of functional cosmetics, the preparation process, main components, influencing factors during the preparation and the market functional cosmetics with lamellar liquid crystal structure. Finally, the prospect of the application of liquid crystal emulsification technology in functional cosmetics is presented, to provide useful references for those engaged in the research of liquid crystal emulsification technology-related functional cosmetics.
8.Effect of transcutaneous electrical acupoint stimulation on postoperative gastrointestinal function during perioperative period:a meta-analysis
Meilu YU ; Xiao LIANG ; Juan ZHU ; Weiqian TIAN ; Saiya ZHANG ; Aonan HONG
The Journal of Clinical Anesthesiology 2024;40(2):170-177
Objective To systematically evaluate the clinical effect of transcutaneous electrical acupoint stimulation(TEAS)on promoting postoperative gastrointestinal function recovery.Methods Randomized controlled trials(RCTs)related to postoperative gastrointestinal function using TEAS were re-trieved from the CNKI,WanFang,VIP,Embase,and PubMed database.RCTs on the effects of TEAS on postoperative gastrointestinal function were included.Methodological quality was evaluated using the quality evaluation tools recommended in Cochrane evaluation manual 5.1.Meta-analysis was performed using Rev-Man 5.3 and Stata 15.Results Thirty-four RCTs involving 3 593 patients were included.There were 1 781 patients in the TEAS group and 1 812 patients in the non-TEAS group.Compared with the non-TEAS group,the incidence of nausea(RR = 0.46,95%CI 0.36 to 0.59,P<0.001)and vomiting(RR = 0.47,95%CI 0.37 to 0.59,P<0.001)within 24 hours after surgery was significantly reduced in the TEAS group,and the postoperative recovery time of bowel sound(MD =-6.42 hours,95%CI-8.53 to-4.32 hours,P<0.001),first exhaust time(MD =-8.72 hours,95%CI-10.64 to-6.80 hours,P<0.001),andfirstdefecationtime(MD =-11.83hours,95%CI-14.67 to-8.98 hours,P<0.001)were significantly shortened.Conclusion TEAS can promote postoperative gastrointestinal function recovery,significantly reducing the incidence of postoperative nausea and vomiting within 24 hours after sur-gery,and shortening the time of first anal exhaust and defecation after surgery.
9.Role and significance of deep learning in intelligent segmentation and measurement analysis of knee osteoarthritis MRI images
Guangwen YU ; Junjie XIE ; Jiajian LIANG ; Wengang LIU ; Huai WU ; Hui LI ; Kunhao HONG ; Anan LI ; Haopeng GUO
Chinese Journal of Tissue Engineering Research 2024;33(33):5382-5387
BACKGROUND:MRI is important for the diagnosis of early knee osteoarthritis.MRI image recognition and intelligent segmentation of knee osteoarthritis using deep learning method is a hot topic in image diagnosis of artificial intelligence. OBJECTIVE:Through deep learning of MRI images of knee osteoarthritis,the segmentation of femur,tibia,patella,cartilage,meniscus,ligaments,muscles and effusion of knee can be automatically divided,and then volume of knee fluid and muscle content were measured. METHODS:100 normal knee joints and 100 knee osteoarthritis patients were selected and randomly divided into training dataset(n=160),validation dataset(n=20),and test dataset(n=20)according to the ratio of 8:1:1.The Coarse-to-Fine sequential training method was used to train the 3D-UNET network deep learning model.A Coarse MRI segmentation model of the knee sagittal plane was trained first,and the rough segmentation results were used as a mask,and then the fine segmentation model was trained.The T1WI and T2WI images of the sagittal surface of the knee joint and the marking files of each structure were input,and DeepLab v3 was used to segment bone,cartilage,ligament,meniscus,muscle,and effusion of knee,and 3D reconstruction was finally displayed and automatic measurement results(muscle content and volume of knee fluid)were displayed to complete the deep learning application program.The MRI data of 26 normal subjects and 38 patients with knee osteoarthritis were screened for validation. RESULTS AND CONCLUSION:(1)The 26 normal subjects were selected,including 13 females and 13 males,with a mean age of(34.88±11.75)years old.The mean muscle content of the knee joint was(1 051 322.94±2 007 249.00)mL,the mean median was 631 165.21 mL,and the mean volume of effusion was(291.85±559.59)mL.The mean median was 0 mL.(2)There were 38 patients with knee osteoarthritis,including 30 females and 8 males.The mean age was(68.53±9.87)years old.The mean muscle content was(782 409.18±331 392.56)mL,the mean median was 689 105.66 mL,and the mean volume of effusion was(1 625.23±5 014.03)mL.The mean median was 178.72 mL.(3)There was no significant difference in muscle content between normal people and knee osteoarthritis patients.The volume of effusion in patients with knee osteoarthritis was higher than that in normal subjects,and the difference was significant(P<0.05).(4)It is indicated that the intelligent segmentation of MRI images by deep learning can discard the defects of manual segmentation in the past.The more accuracy evaluation of knee osteoarthritis was necessary,and the image segmentation was processed more precisely in the future to improve the accuracy of the results.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail