1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
7.Interpretation of "Cancer statistics, 2025": A comparative study on cancer epidemiological characteristics and long-term trends between China and the United States
Ruifeng XU ; Hongrui WANG ; Yun CHE ; Na REN ; Guochao ZHANG ; Liang ZHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):442-452
In 2025, the American Cancer Society published "Cancer statistics, 2025", which projected cancer data for the upcoming year based on incidence data collected by central cancer registries (through 2021) and mortality data obtained from the National Center for Health Statistics (through 2022). Similarly, the National Cancer Center of China released "Cancer incidence and mortality in China, 2022" in December 2024, analyzing data from 22 cancer registries across the country. This study provides a comparative analysis of cancer incidence and mortality trends in China and the United States during the same period, with a focus on sex- and age-specific distributions and long-term changes in cancer patterns. Long-term trends indicate that lung and liver cancer mortality rates in China have declined, primarily due to tobacco control measures and hepatitis B vaccination programs. However, the burden of gastric and esophageal cancers remains substantial. In the United States, mortality rates for colorectal and lung cancers have continued to decline, largely attributed to widespread screening programs and advances in immunotherapy. As economic growth and social development, China’s cancer profile is gradually shifting towards patterns observed in countries with high human development index. However, the prevention and control of upper gastrointestinal cancers remains a critical public health challenge that requires further attention.
8.Design and Reliability Research of Spherical Radiotherapy Accelerator Motion System.
Shuming XU ; Yongxin CHE ; Haipeng LIANG ; Guoyong ZHAO ; Yanjie LI
Chinese Journal of Medical Instrumentation 2025;49(1):48-54
At present, the C-arm structure accelerators commonly used in radiotherapy equipment are complex in operation and have potential safety hazards when realizing non-coplanar treatment. By combining with medical robotic arm technology, a spherical radiotherapy accelerator motion system is designed. The beam module is clamped by the medical robotic arm structure to achieve three-dimensional multi-angle irradiation treatment within the non-coplanar angle range. Firstly, the rotating mechanism, beam module, and MLC module of the spherical radiotherapy equipment are designed. Then, the double-plane counterweight method is used to calculate the dynamic balance of the equipment, ensuring that the beam center point does not rotate during the treatment process. Finally, the strength check and reliability analysis of the transmission component gear are conducted. The results show that the designed spherical radiotherapy accelerator motion system can meet the requirements of stable, accurate, and fast precision radiotherapy, which is conducive to improving the treatment efficiency.
Particle Accelerators/instrumentation*
;
Equipment Design
;
Reproducibility of Results
;
Radiotherapy/instrumentation*
9.Methodological Consideration on Combination Model of TCM Clinical Practice Guidelines and Real-world Study
Guozhen ZHAO ; Huizhen LI ; Ning LIANG ; Haili ZHANG ; Bin LIU ; Qianzi CHE ; Feng ZHOU ; He LI ; Xiaowen CHEN ; Long YE ; Jiahao LIN ; Xingyu ZONG ; Dingyi WANG ; Nannan SHI ; Yanping WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):87-93
The clinical practice guidelines of traditional Chinese medicine (TCM) have problems such as limited clinical application and unclear implementation effects, which may be related to the lack of clinical practice evidence. To provide reliable and precise evidence for clinical practice, this article proposes a model of combining TCM guidelines with real-world study, which includes 4 steps. Firstly, during the implementation process of the guidelines, a high-quality research database is established. Secondly, the recommendations in the guidelines are evaluated based on the established database in multiple dimensions, including applicability, effectiveness, safety, and cost-effectiveness, and thus their effectiveness in practical applications can be determined. Thirdly, based on the established database, core prescriptions are identified, and the targeted populations and medication plans are determined. That is, the best treatment regimen is established based on the analysis of abundant clinical data regarding the effects of different medication frequencies, dosages, and duration on efficacy. Fourthly, the guidelines are updated according to the real-world evidence. The research based on this model can provide real-world evidence for ancient and empirical prescriptions, improving their application in clinical practice. Moreover, this model can reduce research costs and improve research efficiency. When applying this model, researchers need to pay attention to the quality of real-world evidence, ensuring that it can truly reflect the situation in clinical practice. In addition, importance should be attached to the clinical application of guideline recommendations, ensuring that doctors can conduct standardized diagnosis and treatment according to the guidelines. Finally, full-process participation of multidisciplinary experts is encouraged to ensure the comprehensiveness and scientificity of the study. In conclusion, the application of this model will contribute to the development of TCM guidelines responsive to the needs of clinical practice and achieve the goal of promoting the homogenization of TCM clinical diagnosis and treatment.
10.Methods and Challenges for Identifying and Controlling Confounding Factors in Traditional Chinese Medicine Observational Studies
Guozhen ZHAO ; Ziheng GAO ; Chen ZHAO ; Huizhen LI ; Ning LIANG ; Bin LIU ; Qianzi CHE ; Haili ZHANG ; Yixiang LI ; Feng ZHOU ; He LI ; Bo LI ; Nannan SHI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):120-126
As a supplement to randomized controlled trials, observational studies can provide evidence for the effectiveness of traditional Chinese medicine (TCM) treatment measures. They can also study influencing factors of diseases, etiology, and prognosis. However, there is a confounding effect due to the lack of randomization, which seriously affects the causal inference between the study factors and the outcome, resulting in confounding bias. Therefore, identifying and controlling confounding factors are key issues to be addressed in TCM observational studies. According to the causal network and the characteristics of TCM theory, confounding factors can be categorized into measured and unmeasured confounding factors. In addition, attention must be paid to identifying confounding factors and intermediate variables, as well as the interaction between confounding factors and study factors. For methods of controlling confounding factors, measured confounding factors can be controlled by stratification, multifactor analysis, propensity scores, and disease risk scores. Unmeasured and unknown confounding factors can be corrected using instrumental variable methods, difference-in-difference methods, and correction for underlying event rate ratios. Correcting and controlling confounding factors can ensure a balance between groups, and confounding bias can be reduced. In addition, methods such as sensitivity analysis and determination of interactions make the control of confounding factors more comprehensive. Due to the unique characteristics of TCM, observational studies of TCM face unique challenges in identifying and controlling confounding factors, including the ever-changing TCM treatment measures received by patients, the often-overlooked confounding effects in the four diagnostic information of TCM, and the lack of objective criteria for TCM evidence-based diagnosis. Some scholars have already conducted innovative explorations to address these issues, providing a methodological basis for conducting higher-quality TCM observational studies, so as to obtain more rigorous real-world evidence of TCM and gradually develop quality evaluation criteria for OS that are consistent with the characteristics of TCM.

Result Analysis
Print
Save
E-mail