1.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
2.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
3.RNA SNP Detection Method With Improved Specificity Based on Dual-competitive-padlock-probe
Qin-Qin ZHANG ; Jin-Ze LI ; Wei ZHANG ; Chuan-Yu LI ; Zhi-Qi ZHANG ; Jia YAO ; Hong DU ; Lian-Qun ZHOU ; Zhen GUO
Progress in Biochemistry and Biophysics 2024;51(11):3021-3033
ObjectiveThe detection of RNA single nucleotide polymorphism (SNP) is of great importance due to their association with protein expression related to various diseases and drug responses. At present, splintR ligase-assisted methods are important approaches for RNA direct detection, but its specificity will be limited when the fidelity of ligases is not ideal. The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection. MethodsIn this study, a dual-competitive-padlock-probe (DCPLP) assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation. To verify the method, we employed dual competitive padlock probe-mediated rolling circle amplification (DCPLP-RCA) to genotype the CYP2C9 gene. ResultsThe specificity was well improved through the competition and strand displacement of dual padlock probe, with an 83.26% reduction in nonspecific signal. By detecting synthetic RNA samples, the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L. Furthermore, clinical samples were applied to the method to evaluate its performance, and the genotyping results were consistent with those obtained using the qPCR method. ConclusionThis study has successfully established a highly specific direct RNA SNP detection method, and provided a novel avenue for accurate identification of various types of RNAs.
4.Determination of effective dose of dexmedetomidine administered intranasally combined with oral midazolam sedation for pediatric MRI:a modified sequential study
Jian TANG ; Jin-Peng QIU ; Hai-Ya TU ; Jia-Lian ZHAO ; Yao-Qin HU
Medical Journal of Chinese People's Liberation Army 2024;49(8):876-880
Objective To determine the effective dose of dexmedetomidine administered intranasally combined with oral midazolam sedation before pediatric magnetic resonance image(MRI).Methods This is a prospective modified sequential study.Children scheduled for MRI at the Children's Hospital of Zhejiang University School of Medicine from February to March 2023,aged 1 month to 6 years old,with a weight of 6.0-23.5 kg,were enrolled in this study.All children received 0.5 mg/kg oral midazolam,followed by intranasal dexmedetomidine.The initial dose of dexmedetomidine was 0.5 μg/kg,and the intranasal dose of dexmedetomidine was determined using the modified Dixon's up-and-down method with increments or decrements of 0.1 μg/kg.Probit analysis was used for calculating the half effective dose(ED50),95%effective dose(ED95)and the corresponding 95%confidence interval(CI)of intranasal dexmedetomidine combined with oral midazolam for pediatric sedation during MRI.The sedation onset time,wake-up time,vital signs and adverse reactions were recorded.Results Among all the children,the sedation onset time of successful sedation children was(31.21±7.47)min,and the wake-up time was(81.21±26.04)min.The ED50 for effective sedation with intranasal dexmedetomidine combined with oral medication at a dose of 0.5 mg/kg was calculated to be 0.392 μg/kg,with a 95%CI of 0.302-0.461 μg/kg;the ED95 was 0.549 μg/kg,with a 95%CI of 0.473-0.996 μg/kg.There was a statistically significant difference(P<0.05)in heart rate and diastolic blood pressure after sedation compared to the baseline before medication.Two cases of restlessness during the awakening period were observed,but no other adverse reactions occurred.Conclusions The sedation regimen of intranasal dexmedetomidine combined with oral midazolam is non-invasive,easy to implement,safe,and effective.It can be widely used in pediatric MRI.
5.The inhibitory effect of artesunate on hepatocellular carcinoma cells by regulating expression of GADD45A and NACC1
Guan-Tong SHEN ; Jin-Yao DONG ; Jing FENG ; Nan QIN ; Gen-Lai DU ; Fei ZHU ; Ke LIAN ; Xin-Yu LIU ; Qing-Liang LI ; Xun-Wei ZHANG ; Ru-Yi SHI
Chinese Pharmacological Bulletin 2024;40(6):1089-1097
Aim To explore the effect and mechanism of the artesunate(ART)on hepatocellular carcinoma(HCC).Methods The cell lines MHCC-97H and HCC-LM3 were used to be detected.MTT and clone formation were used to determine the cell proliferation;Wound healing was used to detect the cell migration;Transwell was used to test the cell invasion.Flow-cy-tometry was used to detect cell apoptosis and cell cy-cle.RNA-seq and qRT-PCR was used to detect the genes expression.Results The proliferation,migra-tion and invasion of treated cells were obviously inhibi-ted(P<0.01).Moreover,the apoptosis rate in-creased significantly,so did the proportion of G2/M cells.Transcriptomic analysis identified GADD45A as a potential target of ART through RNA-sequencing da-ta,and suggested that ART might induce apoptosis and cell cycle arrest through regulating the expression of GADD45A.In addition,the results of mechanism studies and signaling analysis suggested that GADD45A had interaction with its upstream gene NACC1(nucle-us accumbens associated 1).Moreover,after ART treatment,the expressions of GADD45A and NACC1 were changed significantly.Conclusion ART may be a potential drug to resist HCC by affecting the expres-sion of GADD45A and its upstream gene NACC1,which provides a new drug,a new direction and a new method for the clinical treatment of HCC.
7.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases
8.Effective substance and mechanism of Ziziphi Spinosae Semen extract in treatment of insomnia based on serum metabolomics and network pharmacology.
Zhen-Hua BIAN ; Wen-Ming ZHANG ; Jing-Yue TANG ; Qian-Qian FEI ; Min-Min HU ; Xiao-Wei CHEN ; Lian-Lin SU ; Cheng-Hao FEI ; De JI ; Chun-Qin MAO ; Huang-Jin TONG ; Tu-Lin LU ; Xiao-Hang YUAN
China Journal of Chinese Materia Medica 2022;47(1):188-202
This study aims to study the effective substance and mechanism of Ziziphi Spinosae Semen extract in the treatment of insomnia based on serum metabolomics and network pharmacology. The rat insomnia model induced by p-chlorophenylalanine(PCPA) was established. After oral administration of Ziziphi Spinosae Semen extract, the general morphological observation, pentobarbital sodium-induced sleep test, and histopathological evaluation were carried out. The potential biomarkers of the extract in the treatment of insomnia were screened by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS) combined with multivariate analysis, and the related metabolic pathways were further analyzed. The "component-target-pathway" network was constructed by ultra-high performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry(UHPLC-Q-Exactive-MS/MS) combined with network pharmacology to explore the effective substances and mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. The results of pentobarbital sodium-induced sleep test and histopathological evaluation(hematoxylin and eosin staining) showed that Ziziphi Spinosae Semen extract had good theraputic effect on insomnia. A total of 21 endogenous biomarkers of Ziziphi Spinosae Semen extract in the treatment of insomnia were screened out by serum metabolomics, and the metabolic pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and nicotinate and nicotinamide metabolism were obtained. A total of 34 chemical constituents were identified by UHPLC-Q-Exactive-MS/MS, including 24 flavonoids, 2 triterpenoid saponins, 4 alkaloids, 2 triterpenoid acids, and 2 fatty acids. The network pharmacological analysis showed that Ziziphi Spinosae Semen mainly acted on target proteins such as dopamine D2 receptor(DRD2), 5-hydroxytryptamine receptor 1 A(HTR1 A), and alpha-2 A adrenergic receptor(ADRA2 A) in the treatment of insomnia. It was closely related to neuroactive ligand-receptor interaction, serotonergic synapse, and calcium signaling pathway. Magnoflorine, N-nornuciferine, caaverine, oleic acid, palmitic acid, coclaurine, betulinic acid, and ceanothic acid in Ziziphi Spinosae Semen may be potential effective compounds in the treatment of insomnia. This study revealed that Ziziphi Spinosae Semen extract treated insomnia through multiple metabolic pathways and the overall correction of metabolic disorder profile in a multi-component, multi-target, and multi-channel manner. Briefly, this study lays a foundation for further research on the mechanism of Ziziphi Spinosae Semen in treating insomnia and provides support for the development of innovative Chinese drugs for the treatment of insomnia.
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Metabolomics
;
Network Pharmacology
;
Rats
;
Seeds/chemistry*
;
Sleep Initiation and Maintenance Disorders/drug therapy*
;
Tandem Mass Spectrometry
;
Ziziphus/chemistry*
9.Stereotactic body radiation therapy for patients with lung and liver oligometastases from colorectal cancer: a phase Ⅱ trial.
Jun Qin LEI ; Wen Yang LIU ; Yuan TANG ; Yu TANG ; Ning LI ; Hua REN ; Chi YIHEBALI ; Yong Kun SUN ; Wen ZHANG ; Xin Yu BI ; Jian Jun ZHAO ; Hui FANG ; Ning Ning LU ; Ai Ping ZHOU ; Shu Lian WANG ; Yong Wen SONG ; Yue Ping LIU ; Bo CHEN ; Shu Nan QI ; Jian Qiang CAI ; Ye Xiong LI ; Jing JIN
Chinese Journal of Oncology 2022;44(3):282-290
Objective: To explore the safety and effectiveness of stereotactic body radiation therapy (SBRT) for oligometastases from colorectal cancer (CRC). Methods: This is a prospective, single-arm phase Ⅱ trial. Patients who had histologically proven CRC, 1 to 5 detectable liver or lung metastatic lesions with maximum diameter of any metastases ≤5 cm were eligible. SBRT was delivered to all lesions. The primary endpoint was 3-year local control (LC). The secondary endpoints were treatment-related acute toxicities of grade 3 and above, 1-year and 3-year overall survival (OS) and progression free survival (PFS). Survival analysis was performed using the Kaplan-Meier method and Log rank test. Results: Petients from 2016 to 2019 who were treated in Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. Forty-eight patients with 60 lesions were enrolled, including 37 liver lesions and 23 lung lesions. Forty-six patients had 1 or 2 lesions, with median diameter of 1.3 cm, the median biologically effective dose (BED(10)) was 100.0 Gy. The median follow-up was 19.5 months for all lesions. Twenty-five lesions developed local failure, the median local progression free survival was 15 months. The 1-year LC, OS and PFS was 70.2% (95% CI, 63.7%~76.7%), 89.0% (95% CI, 84.3%~93.7%) and 40.4% (95%CI, 33.0%~47.8%). The univariate analysis revealed that planning target volume (PTV) and total dose were independent prognostic factors of LC (P<0.05). For liver and lung lesions, the 1-year LC, OS and PFS was 58.7% and 89.4% (P=0.015), 89.3% and 86.5% (P=0.732), 30.5% and 65.6% (P=0.024), respectively. No patients developed acute toxicity of grade 3 and above. Conclusion: SBRT is safe and effective treatment method for oligometastases from CRC under precise respiratory motion management and robust quality assurance.
Colorectal Neoplasms
;
Humans
;
Liver/pathology*
;
Lung/pathology*
;
Prospective Studies
;
Radiosurgery/methods*
10.Mechanism of Puerariae Lobatae Radix against lung cancer by inhibiting histone demethylase LSD1.
Ting-Ting QIN ; Jin-Lian MA ; Yong YUAN ; Kun DU ; Jin-Xin MIAO ; Xiao-Fang LI ; Hua-Hui ZENG ; Xiang-Xiang WU ; Zhong-Hua LI
China Journal of Chinese Materia Medica 2022;47(20):5574-5583
Histone lysine-specific demethylase 1(LSD1) has become a promising molecular target for lung cancer therapy. Upon the screening platform for LSD1 activity, some Chinese herbal extracts were screened for LSD1 activity inhibition, and the underlying mechanism was preliminarily investigated at both molecular and cellular levels. The results of LSD1 inhibition showed that Puerariae Lobatae Radix extract can effectively reduce LSD1 expression to elevate the expression of H3 K4 me2 and H3 K9 me2 substrates in H1975 and H1299 cells. Furthermore, Puerariae Lobatae Radix was evaluated for its anti-lung cancer activity. It had a potent inhibitory ability against the proliferation and colony formation of both H1975 and H1299 cells. Flow cytometry and DAPI staining assays indicated that Puerariae Lobatae Radix can induce the apoptosis of lung cancer cells. In addition, it can significantly suppress the migration and reverse the epithelial-mesenchymal transition(EMT) process of lung cancer cells by activating E-cadherin and suppressing the expression of N-cadherin, slug and vimentin. To sum up, Puerariae Lobatae Radix displayed a robust inhibitory activity against lung cancer, and the mechanism may be related to the down-regulation of LSD1 expression to induce the cell apoptosis and suppress the cell migration and EMT process. These findings will provide new insights into the action of Puerariae Lobatae Radix as an anti-lung cancer agent and offer new ideas for the study on the anti-cancer action of Chinese medicine based on the epigenetic modification.
Pueraria/chemistry*
;
Histone Demethylases/analysis*
;
Plant Roots/chemistry*
;
Epithelial-Mesenchymal Transition
;
Neoplasms

Result Analysis
Print
Save
E-mail