1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
6.Theoretical Validation of the Identification of Therapeutic Dominant Stages of Traditional Chinese Medicine Based on Subdivision Model of Disease Course:Taking Premature Ovarian Failure for Example
Rui-Qi ZHANG ; Yuan-Li RAO ; Zhen-Miao PANG ; Zhi-Lai YAN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):625-630
Objective To explore the feasibility and operability in identifying the therapeutic dominant stages of traditional Chinese medicine(TCM)based on subdivision model of disease course.Methods The hierarchical Bayesian model was used to differentiate the disease course of 125 cases of premature ovarian failure(POF),and the disease course of POF were divided into the occult stage,diminished ovarian reserve(DOR)stage,premature ovarian insufficiency(POI)stage,and POF stage.An then the paired sample t-test,Pearson correlation analysis and expert in-depth interview were used for the analysis of the therapeutic effects of TCM for POF at various stages.Results(1)Compared with POF stage,DOR and POI stages were frequently intervened by Chinese patent medicine.(2)In DOR(complicated with POI)stage and POF stage,there was significant difference between the degree of TCM intervention and the therapeutic effect(t =-3.70,P<0.001).(3)The degree of TCM intervention was positively correlated with treatment outcomes in the DOR stage(r = 0.679,P<0.001),so did in the POF stage(r = 0.432,P<0.001),but the correlation in the POF stage was slightly lower than that in the DOR stage.(4)The results of in-depth interviews with experts of TCM gynecology showed that in the concealed phase of POF,the prognosis would be most favorable if TCM regulation and intervention were performed.In the DOR stage and POI stage,treatment with Chinese medicine prescriptions usually brought about better curative effect and prognosis.For the patients at POF stage,the therapeutic effect of TCM depended on the patients'compliance and the treatment course,and the effect was relatively not as good as that of the previous stages.Conclusion In the DOR stage and POF stage,the higher the degree of TCM intervention,the better the prognosis will be achieved for the patients treated with western medicine.In the POF stage,the efficacy of TCM intervention is reduced to a certain extent compared with the DOR stage.The results indicated that it is feasible and operable to identify the TCM therapeutic dominant stages based on the subdivision model of disease course.
7.Effects of electroacupuncture on motor function and related molecular mechanisms in mice with Parkinson's disease
Ling QI ; Yanan LI ; Yao WANG ; Xiaolei ZHANG ; Mengni HU ; Hanzhang LI ; Die XIAO ; Zhen RONG ; Jun MA
Journal of Beijing University of Traditional Chinese Medicine 2024;47(5):721-728
Objective To explore the effects of electroacupuncture on motor function in Parkinson's disease(PD)model mice and NLRP3 inflammasome-related proteins in the midbrain substantia nigra(SN).Methods C57BL/6 mice were assigned to three groups according to the random number table method:control group,model group,and electroacupuncture(EA)group,12 mice per group.The PD model was reproduced by intragastric administration of rotenone solution 10 mg/(kg·d).EA group was administered at the three selected points,"Fengfu"(GV16),"Taichong"(LR3),and"Zusanli"(ST36),with a treatment cycle of 2 weeks.The control and model groups took the same time synchronous fixation operation for the control variable.Behavioral scores and open field tests were used to detect the exercise ability of mice in each group.Tyrosine hydroxylase(TH)and α-synuclein(α-syn)in the midbrain SN of mice in all groups were measured with an immunohistochemistry test.NLRP3 and cysteinyl aspartate specific proteinase-1(Caspase-1)protein expression levels in the midbrain SN of mice in the three groups were measured using Western blotting,and interleukin-1β(IL-1β)content was determined with an enzyme-linked immunosorbent assay.Results Compared to the control group,the behavioral scores of the mice in the model group were higher(P<0.01).Compared to the model group,the behavioral scores of the mice in the EA group were lower(P<0.01).Compared to the control group,the time ratio of the relative rest state of the mice in the model group(<100 mm/s)increased significantly(P<0.01),while the time ratio of the slow motion(100~200 mm/s)and time ratio of the fast motion(>200 mm/s)state decreased significantly(P<0.01).Compared to the model group,the time ratio spent in the relative rest state of mice in the EA group decreased significantly(P<0.01),while the time ratio of the slow motion state and time ratio of the fast motion state and movement rate increased significantly(P<0.01).Compared to the control group,the TH expression level decreased in the SN in the model group(P<0.01),while α-syn increased(P<0.01).Compared to the model group,the TH expression level in the EA group increased(P<0.05),while α-syn decreased(P<0.05).Compared to the control group,the protein expressions of NLRP3 and Caspase-1 in the SN of the model group increased(P<0.01);compared to the model group,the expressions of NLRP3 and Caspase-1 in the SN of the midbrain of mice decreased after EA treatment(P<0.01).Compared to the control group,IL-1β in the SN of the mouse midbrain increased in the model group(P<0.01).Compared to the model group,IL-1β decreased in the EA group(P<0.05).Conclusion This experiment shows that stimulation of EA in"Fengfu","Taichong",and"Zusanli"can effectively reduce abnormal aggregation of the PD marker α-syn,increase TH expression,and enhance the motor dysfunction of PD model mice.The molecular mechanism is related to the regulation of the expression of NLRP3,Caspase-1,and IL-1β of inflammasome-related pathways.
8.Effect of electroacupuncture on the NEK7/NLRP3 inflammatory signaling pathway in intestine of mice with Parkinson's disease
Hanzhang LI ; Yanan LI ; Lei GUO ; Yao WANG ; Xiaolei ZHANG ; Mengni HU ; Ling QI ; Zhen RONG ; Jun MA
Journal of Beijing University of Traditional Chinese Medicine 2024;47(10):1466-1473
Objective To investigate the effects of electroacupuncture on the intestinal NIMA-related kinase 7(NEK7)/NOD-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathway in mice with Parkinson's disease.Methods According to the randomized number table method,36 C57BL/6 mice were randomly divided into the control group,the model group,and the electroacupuncture group,with 12 mice per group.The Parkinson's disease mouse model was established by gavage of rotenone solution(10 mg/kg)for 28 d.After molding,the electroacupuncture group was stimulated with"Fengfu"(DU17),"Taichong"(LR3),and"Zusanli"(ST36)for 14 d,while the control group and the model group were only treated with immobilization.The motor ability of mice was detected by pole climbing test and hindlimb rating score,the positive expressions of nigral tyrosine hydroxylase(TH)and colon occludin were detected by immunohistochemistry,the histological morphology of colon was observed by hematoxylin-eosin staining,and Western blotting was used to detect the protein expressions of NEK7,NLRP3,Caspase-1,and interleukin-1β(IL-1β).Results Compared with the control group,mice in the model group had lower score on the pole climbing test and a higher hindlimb rating score(P<0.01);the average optical densities of nigral TH and colon occludin were decreased(P<0.01);significant inflammatory infiltration was observed in the colonic tissue,and the muscularis propria was thinned;and the protein expressions of NEK7,NLRP3,Caspase-1,and IL-1β in the colonic tissue were elevated(P<0.01).Compared with the model group,mice in the electroacupuncture group had higher score on the pole climbing test and a lower hindlimb rating score(P<0.01);the average optical densities of nigral TH and colon occludin were increased(P<0.01);the degree of inflammatory infiltration of colonic tissues decreased,and the muscularis propria was thickened;and the protein expressions of NEK7,NLRP3,Caspase-1,and IL-1β of colonic tissues were decreased(P<0.01).Conclusion Electroacupuncture at"Fengfu"(DU17),"Taichong"(LR3),and"Zusanli"(ST36)can improve motor functional impairments in mice with Parkinson's disease,and the mechanism may be through the inhibition of intestinal NEK7/NLRP3 pathway,improving the intestinal barrier damage,relieving the intestinal inflammation,and improving the dopaminergic neuron injury.
9.Application value of CT radiomics in differentiating malignant and benign sub-centimeter solid pulmonary nodules
Jianing LIU ; Linlin QI ; Jiaqi CHEN ; Fenglan LI ; Shulei CUI ; Sainan CHENG ; Yawen WANG ; Zhen ZHOU ; Jianwei WANG
Chinese Journal of Radiological Health 2024;33(3):340-345
Objective To investigate the application efficiency and potential of CT radiomics in differentiating malignant and benign sub-centimeter solid pulmonary nodules. Methods A retrospective study was performed on the sub-centimeter ( ≤ 10 mm) solid pulmonary nodules detected by enhanced CT in our hospital from March 2020 to January 2023. Malignancy was confirmed by surgical pathology, and benignity was confirmed by surgical pathology or follow-up. Lesions were manually segmented and radiomic features were extracted. The feature dimension was reduced via feature correlation analysis and least absolute shrinkage and selection operator (LASSO). The 5-fold cross validation was used to validate the model. Support vector machine, logistic regression, linear classification support vector machine, gradient boosting, and random forest models were established for CT radiomics. Receiver operating characteristic curves were drawn. Delong test was used to compare the diagnostic performance of the five classifiers. The optimal model was selected and compared to radiologists with medium and high seniority. Results A total of 303 nodules, 136 of which were malignant, were examined. Radiomics models were established after feature extraction and selection. On test set, the areas under the receiver operating characteristic curves of support vector machine, logistic regression, linear classification support vector machine, random forest, and gradient boosting models were 0.922 (95%CI: 0.893, 0.950), 0.910 (95%CI: 0.878, 0.942), 0.905 (95%CI: 0.872, 0.938), 0.899 (95%CI: 0.865, 0.933), and 0.896 (95%CI: 0.862, 0.930), respectively. Delong test indicated no significant differences in the performance of the five radiomics models, and the support vector machine model showed the highest accuracy and F1 score. The support vector machine model showed significantly higher diagnostic accuracy as compared to radiologists (83.8% vs. 55.4%, P < 0.001). Conclusion The radiomics models achieved high diagnostic efficiency and may help to reduce the uncertainty in diagnosis of malignant and benign sub-centimeter solid nodules by radiologists.
10.The Effect of Mitochondrial Damage in Chondrocytes on Osteoarthritis
Zhen-Wei LI ; Jing-Yu HOU ; Yu-Ze LIN ; Zhi-Qi ZHANG ; Shang-Yi LIU ; Xiao-Wen LIU ; Kang-Quan SHOU
Progress in Biochemistry and Biophysics 2024;51(7):1576-1588
The pathogenesis of osteoarthritis (OA) is related to a variety of factors such as mechanical overload, metabolic dysfunction, aging, etc., and is a group of total joint diseases characterized by intra-articular chondrocyte apoptosis, cartilage fibrillations, synovial inflammation, and osteophyte formation. At present, the treatment methods for osteoarthritis include glucosamine, non-steroidal anti-inflammatory drugs, intra-articular injection of sodium hyaluronate, etc., which are difficult to take effect in a short period of time and require long-term treatment, so the patients struggle to adhere to doctor’s advice. Some methods can only provide temporary relief without chondrocyte protection, and some even increase the risk of cardiovascular disease and gastrointestinal disease. In the advanced stages of OA, patients often have to undergo joint replacement surgery due to pain and joint dysfunction. Mitochondrial dysfunction plays an important role in the development of OA. It is possible to improve mitochondrial biogenesis, quality control, autophagy balance, and oxidative stress levels, thereby exerting a protective effect on chondrocytes in OA. Therefore, compared to traditional treatments, improving mitochondrial function may be a potential treatment for OA. Here, we collected relevant literature on mitochondrial research in OA in recent years, summarized the potential pathogenic factors that affect the development of OA through mitochondrial pathways, and elaborated on relevant treatment methods, in order to provide new diagnostic and therapeutic ideas for the research field of osteoarthritis.

Result Analysis
Print
Save
E-mail