1.Research progress of Dexamethasone intravitreal implants in the treatment of diabetic macular edema
Xiaoting YUAN ; Jiao HUANG ; Xiaojuan CHENG ; Rong LI ; Lishuai XU
International Eye Science 2025;25(1):82-87
		                        		
		                        			
		                        			 Diabetic macular edema(DME), a serious complication of diabetic retinopathy(DR), is a chronic condition caused by multiple factors. Throughout its progression, inflammatory factors and vascular endothelial growth factor(VEGF)play a critical role. Anti-VEGF drugs have shown significant effectiveness in the treatment of DME; however, some patients may experience persistent DME after injection or require frequent injections. Dexamethasone intravitreal implants(DEX implants)serve as a sustained-release implant characterized by a reasonable release profile and high bioavailability. They offer safe, effective, and prolonged anti-inflammatory effects, aiding in the repair of retinal barrier and reduction of exudation. To further enhance patients' visual quality, exploring the efficacy of DEX implants in combination with existing treatment regimens has great clinical significance. This review primarily discusses the research advancements in DEX implants, focusing on their pharmacological properties, indications for use, and their combination with existing drugs and treatment methods. It also evaluates the advantages and disadvantages of combination therapy or switching to DEX implants compared to current standard treatments, aiming to provide guidance for personalized treatment options for patients with DME. 
		                        		
		                        		
		                        		
		                        	
2.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway. 
		                        		
		                        		
		                        		
		                        	
3.Regulatory mechanism of non-coding RNA in osteoarthritis and the research on traditional Chinese medicine intervention
Fanzhuo HUANG ; Yuan LI ; Xuan ZHANG ; Yuan LIU
China Pharmacy 2025;36(14):1819-1824
		                        		
		                        			
		                        			Osteoarthritis (OA) is a chronic degenerative disease characterized primarily by the degeneration of articular cartilage, with its pathogenesis involving a multifactorial interplay of inflammatory responses, chondrocyte apoptosis, and extracellular matrix (ECM) degradation. Non-coding RNA (ncRNA) participates in the occurrence and development of OA through their diverse regulatory pathways, providing new potential targets for its treatment. This paper systematically elucidates the mechanisms of ncRNA [micro ncRNA (miR), circular ncRNA (circR), and long ncRNA (lncR)] in regulating OA , as well as the current research status of traditional Chinese medicine (TCM) intervening in OA by modulating ncRNA. It is found that ncRNA participate in the pathological processes of OA by constructing a multi-layered regulatory network: miR inhibits the translation of key target genes and regulate downstream signaling pathways; circR can act as ‘molecular sponges’ to competitively absorb miRs for indirect regulation, as well as directly modulate protein functions; lncR possess both ‘molecular sponge’ capabilities and the ability to intervene directly in pathways. Andrographolide, Xinfeng capsules and others intervene in the OA process by regulating the expression of miR, forming a ‘TCM-miR-downstream response chain’, which reduces the expression of matrix-hydrolyzing enzymes and inhibits the secretion of inflammatory factors; paeoniflorin, Rongjin niantong formula and others intervene in the OA process by affecting circR and lncR, thereby forming a ‘TCM-lncR/circR-miR-downstream response chain’ to promote chondrocyte proliferation and reduce ECM degradation.
		                        		
		                        		
		                        		
		                        	
4.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
		                        		
		                        			
		                        			Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization. 
		                        		
		                        		
		                        		
		                        	
5.Effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus progression based on the "moderate fire generating qi, hyperactive fire consuming qi" theory
Yuying ZHANG ; Weiyu HUANG ; Haoyu YUAN ; Baohua WANG ; Saimei LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):14-20
		                        		
		                        			
		                        			This study examined the effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus (T2DM) progression based on the traditional Chinese medicine theory that " moderate fire generating qi, hyperactive fire consuming qi" . T2DM is closely associated with chronic low-grade inflammation, with islet macrophages playing a central role in this process. Under physiological conditions, islet macrophages secrete anti-inflammatory and growth factors to regulate the immune response, promote cell proliferation, and support islet β-cell survival and function, reflecting the concept of " moderate fire generating qi" . However, during the pathological process of T2DM, islet macrophages become over-activated and dysfunctional, secreting large amounts of pro-inflammatory factors that trigger severe inflammatory responses and oxidative stress. This process damages islet β-cells, disrupts the islet microenvironment and blood supply, exacerbates local inflammation and structural damage, and worsens the survival environment of β-cells. Ultimately, this leads to fewer β-cells and function loss, aligning with the " hyperactive fire consuming qi" theory, where excessive fire depletes qi and blood. This study enhances the understanding and application of traditional Chinese medicine theories in modern medicine, offering a new perspective on T2DM prevention and treatment. Regulating islet macrophage function and reducing their pro-inflammatory responses may become key strategies for preserving β-cell function and slowing T2DM progression.
		                        		
		                        		
		                        		
		                        	
6.Buzhong Yiqitang Regulates Endoplasmic Reticulum Stress via Nrf2/ROS/PERK/CHOP Signaling Pathway to Attenuate Cisplatin Resistance in NSCLC
He LI ; Yuetong LIU ; Jingyi HUANG ; Qirui MU ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):79-89
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of Buzhong Yiqitang in attenuating cisplatin resistance of non-small cell lung cancer (NSCLC) cells (A549/DDP) by regulating endoplasmic reticulum stress (ERS) via the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS)/double-stranded RNA-activated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)/CCAAT enhancer-binding protein homologous protein (CHOP) signaling pathway. MethodsSprague Dawley
		                        		
		                        	
7.Buzhong Yiqitang Induces Ferroptosis by Regulating PCBP1 to Attenuate Cisplatin Resistance in Non-small Cell Lung Cancer
Yuetong LIU ; He LI ; Qirui MU ; Jingyi HUANG ; Haoran CAI ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):90-97
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of Buzhong Yiqitang in attenuating cisplatin resistance in non-small cell lung cancer (NSCLC) by inducing ferroptosis via poly(rC)-binding protein 1 (PCBP1). MethodsThe serum containing Buzhong Yiqitang was prepared and cisplatin-resistant human non-small cell lung cancer (NSCLC) cells (A549/DDP) were cultured and randomly grouped as follows: Blank (10% blank serum), model (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% serum containing Buzhong Yiqitang+20 mg·L-1 cisplatin), Fe-1 (10% blank serum+20 mg·L-1 cisplatin+5 μmol·L-1 Fe-1), and Buzhong Yiqitang+Fe-1 (10% serum containing Buzhong Yiqitang+20 mg·L-1 cisplatin+5 μmol·L-1 Fe-1). Firstly, PCR Array was used to screen ferroptosis-related genes regulated by Buzhong Yiqitang, and PCBP1 was identified as the target for studying the attenuation of cisplatin resistance by Buzhong Yiqitang. Subsequently, the median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The ultrastructure of A549/DDP cells in each group was observed by transmission electron microscopy. The protein levels of PCBP1 and glutathione peroxidase 4 (GPX4) were determined by Western blot. The lipid reactive oxygen species (ROS) content in each group was determined by the C11-BODIRY 581/591 fluorescence probe. The ferrous ion assay kit was used to measure the ferrous ion content in each group. The malondialdehyde (MDA) assay kit was used to determine the MDA content in each group. ResultsCompared with model group, the IC50 of cisplatin and the RI of A549/DDP cells decreased in the Buzhong Yiqitang group (P<0.05) but increased in the Fe-1 group (P<0.05). The IC50 of cisplatin and the RI of A549/DDP cells in the Buzhong Yiqitang+Fe-1 group were lower than those in the Fe-1 group (P<0.05). Compared with the model group, the Buzhong Yiqitang group showed obvious mitochondrial ferroptosis, while the mitochondrial damage became less obvious after Fe-1 treatment. Compared with that in the Fe-1 group, the mitochondrial ferroptosis was aggravated after the intervention with Buzhong Yiqitang. Compared with blank group, the model group showed down-regulated expression levels of PCBP1 and GPX4 (P<0.05) and increased content of lipid ROS, ferrous ions, and MDA (P<0.05) in A549/DDP cells. Compared with model group, the Buzhong Yiqitang group showed down-regulated expression levels of PCBP1 and GPX4 (P<0.05) and increased content of lipid ROS, ferrous ions, and MDA (P<0.05), while the Fe-1 group showed up-regulated expression levels of PCBP1 and GPX4 (P<0.05) and reduced content of lipid ROS, ferrous ions, and MDA (P<0.05). Compared with the Fe-1 group, the Buzhong Yiqitang+Fe-1 group showed down-regulated expression levels of PCBP1 and GPX4 and increased content of lipid ROS, ferrous ions, and MDA (P<0.05). ConclusionBuzhong Yiqitang attenuated cisplatin resistance in NSCLC by regulating PCBP1 to induce ferroptosis. 
		                        		
		                        		
		                        		
		                        	
8.Buzhong Yiqitang Regulates Endoplasmic Reticulum Stress to Attenuate Cisplatin Resistance in Non-small Cell Lung Cancer via Nrf2/ROS Pathway
Dan YU ; Qirui MU ; He LI ; Yuetong LIU ; Jingyi HUANG ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):98-104
		                        		
		                        			
		                        			ObjectiveTo investigate the mechanism of Buzhong Yiqitang in attenuating cisplatin resistance in non-small cell lung cancer by observing the effects of Buzhong Yiqitang on endoplasmic reticulum stress-related molecules in human lung adenocarcinoma cells (A549) and cisplatin-resistant cells in human lung adenocarcinoma cells (A549/DDP) via the nuclear factor E2-related factor 2(Nrf2)/reactive oxygen species(ROS) pathway. MethodsThe serum containing Buzhong Yiqitang was prepared and A549 cells and A549/DDP cells were cultured. The cells were randomized into groups A (A549 cells+blank serum), B (A549 cells+20 mg·L-1 cisplatin+blank serum), C (A549 cells+20 mg·L-1 cisplatin+10% Buzhong Yiqitang-containing serum), D (A549/DDP cells+blank serum), E (A549/DDP cells+20 mg·L-1 cisplatin+blank serum), and F (A549/DDP cells+20 mg·L-1 cisplatin+10% Buzhong Yiqitang-containing serum). The cell counting kit-8 (CCK-8) method was used to detect the half maximal inhibitory concentration (IC50) of cisplatin. The protein levels of Nrf2 and p-Nrf2 were determined by Western blotting. The DCFH-DA fluorescent probe was used to measure the content of reactive oxygen species (ROS) in each group. The protein levels of glucose-regulated protein 78 (GRP78), activated transcription factor 6 (ATF6), and C/EBP-homologous protein (CHOP) were determined by Western blot. ResultsCompared with group B, group C showed a reduction in IC50 of cisplatin (P<0.05), which held true in group E compared with group F (P<0.05). Moreover, the IC50 of cisplatin to A549/DDP cells was higher than that to A549 cells before and after Buzhong Yiqitang intervention (P<0.05). Compared with group A, group B showed up-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05). Compared with group B, group C showed down-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05). Compared with group D, group E showed up-regulated protein levels of Nrf2 and p-Nrf2 (P<0.05), which, however, were significantly down-regulated in group F (P<0.05). The ROS content and the protein levels of GRP78, ATF6, and CHOP followed a descending trend of group C > group B > group A in A549 cells and group F > group E > group D in A549/DDP cells (P<0.05). Moreover, the ROS content and the protein levels of GRP78, ATF6, and CHOP in A549 cells were higher than those in A549/DDP cells before and after Buzhong Yiqitang intervention (P<0.05). ConclusionBuzhong Yiqitang may regulate endoplasmic reticulum stress via the Nrf2/ROS pathway to attenuate cisplatin resistance in non-small cell lung cancer. 
		                        		
		                        		
		                        		
		                        	
9.Traditional Chinese Medicine Ameliorates Tumor Chemotherapy Resistance: A Review
Jingyi HUANG ; Yuetong LIU ; He LI ; Qirui MU ; Chenyi LI ; Chunying LIU ; Yuan GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):105-116
		                        		
		                        			
		                        			In the process of tumor chemotherapy, the emergence of multi-drug resistance (MDR) has always been a thorny problem, which is a result of the joint action of the host, tumor cells, and the immune microenvironment. Tumor cells can escape the toxicity of chemotherapeutic drugs through multiple pathways, being easy to produce drug resistance. MDR greatly restricts the effect of chemotherapeutic drugs on tumor cells and affects their therapeutic effects. Traditional Chinese medicine (TCM) has the unique advantages of multi-target, multi-pathway and individualized treatment. The TCM treatment of tumors emphasizes regulating Yin and Yang, as well as reinforcing healthy Qi and dispelling pathogen. In recent years, TCM has demonstrated remarkable efficacy in the treatment of tumors and the amelioration of multi-drug resistance. TCM not only can target the phenomenon of MDR but also greatly weakens the side effects of the patients after the chemotherapy, thus improving the survival quality and rate of the patients. Accordingly, many patients adopt TCM as an adjuvant therapy during or after chemotherapy. The binding of TCM to targets can reverse the drug resistance of various tumors, which has become an emerging research highlight. From the regulatory mechanism of TCM on MDR of tumors, this paper introduces the mechanisms by which tumor cells continue to grow, proliferate, and metastasize by adjusting the intracellular drug concentration, altering or utilizing the tumor microenvironment, and affecting the cell death mode to achieve the resistance to chemotherapeutic drugs. In this regard, the active ingredients and compound prescriptions of TCM can increase the sensitivity of chemotherapeutic drugs by down-regulating drug transporters, improving the tumor microenvironment, and modulating the drug resistance pathways associated with apoptosis, autophagy, ferroptosis, or pyroptosis. The aim of this paper is to explore more clinical practical value of TCM in the treatment of tumors and provide exploratory ideas and a theoretical basis for the future research on tumors and MDR. 
		                        		
		                        		
		                        		
		                        	
10.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
		                        		
		                        			
		                        			 Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail