1.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
2.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
4.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
5.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
6.Long-term survival of surgical versus non-surgical treatment for esophageal squamous cell carcinoma in patients ≥70 years: A retrospective cohort study
Kexun LI ; Changding LI ; Xin NIE ; Wenwu HE ; Chenghao WANG ; Kangning WANG ; Guangyuan LIU ; Junqiang CHEN ; Zefen XIAO ; Qiang FANG ; Yongtao HAN ; Lin PENG ; Qifeng WANG ; Xuefeng LENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):619-625
Objective To compare the long-term survival of elderly patients with esophageal squamous cell carcinoma (ESCC) treated with surgical versus non-surgical treatment. Methods A retrospective analysis was conducted on the clinical data of elderly patients aged ≥70 years with ESCC who underwent esophagectomy or radiotherapy/chemotherapy at Sichuan Cancer Hospital from January 2009 to September 2017. Patients were divided into a surgical group (S group) and a non-surgical group (NS group) according to the treatment method. The propensity score matching method was used to match the two groups of patients at a ratio of 1∶1, and the survival of the two groups before and after matching was analyzed. Results A total of 726 elderly patients with ESCC were included, including 552 males and 174 females, with 651 patients aged ≥70-80 years and 75 patients aged ≥80-90 years. There were 515 patients in the S group and 211 patients in the NS group. The median follow-up time was 60.8 months, and the median overall survival of the S group was 41.9 months [95%CI (35.2, 48.5)], while that of the NS group was only 24.0 months [95%CI (19.8, 28.3)]. The 1-, 3-, and 5-year overall survival rates of the S group were 84%, 54%, and 40%, respectively, while those of the NS group were 72%, 40%, and 30%, respectively [HR=0.689, 95%CI (0.559, 0.849), P<0.001]. After matching, 138 patients were included in each group, and there was no statistical difference in the overall survival between the two groups [HR=0.871, 95%CI (0.649, 1.167), P=0.352]. Conclusion Compared with conservative treatment, there is no significant difference in the long-term survival of elderly patients aged ≥70 years who undergo esophagectomy for ESCC. Neoadjuvant therapy combined with surgery is still an important choice to potentially improve the survival of elderly patients with ESCC.
7.Characteristics of T cell immune responses in adults inoculated with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months
Jing WANG ; Ya-Qun LI ; Hai-Yan WANG ; Yao-Ru SONG ; Jing LI ; Wen-Xin WANG ; Lin-Yu WAN ; Chun-Bao ZHOU ; Xing FAN ; Fu-Sheng WANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):165-170
Objective To evaluate the characteristics of different antigen-specific T cell immune responses to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)after inoculation with 2 doses of SARS-CoV-2 inactivated vaccine for 12 months.Methods Fifteen healthy adults were enrolled in this study and blood samples collected at 12 months after receiving two doses of SARS-CoV-2 inactivated vaccine.The level and phenotypic characteristics of SARS-CoV-2 antigen-specific T lymphocytes were detected by activation-induced markers(AIM)based on polychromatic flow cytometry.Results After 12 months of inoculation with 2 doses of SARS-CoV-2 inactivated vaccine,more than 90%of adults had detectable Spike and Non-spike antigen-specific CD4+ T cells immune responses(Spike:14/15,P=0.0001;Non-spike:15/15,P<0.0001).80%of adults had detectable Spike and Non-spike antigen-specific CD8+ T cells immune responses(Spike:12/15,P=0.0463;Non-spike:12/15,P=0.0806).Antigen-specific CD4+ T cells induced by SARS-CoV-2 inactivated vaccination after 12 months were composed of predominantly central memory(CM)and effector memory 1(EM1)cells.On the other hand,in terms of helper subsets,antigen-specific CD4+ T cells mainly showed T helper 1/17(Th1/17)and T helper 2(Th2)phenotypes.Conclusions SARS-CoV-2 inactivated vaccination generates durable and extensive antigen-specific CD4+ T cell memory responses,which may be the key factor for the low proportion of severe coronavirus disease 2019(COVID-19)infection in China.
8.Efficacy of comprehensive optic canal decompression for traumatic optic nerve injury with no light perception
Xin-Yu LI ; Xi-Tao YANG ; Zhi-Lin GUO
Medical Journal of Chinese People's Liberation Army 2024;49(2):177-181
Objective To evaluate the clinical effect of total optic nerve canal decompression in the treatment of traumatic optic neuropathy(TON)without photoreceptor.Methods The clinical data of 67 patients with no photoreceptor TON admitted to Department of Neurosurgery of the Shanghai Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine from January 2015 to December 2021 were selected for retrospective analysis,in which 37 cases in observation group received total optic nerve canal decompression surgery and 30 cases in control group received non-total optic nerve canal decompression surgery.Both groups received high-dose glucocorticoid therapy and oral administration of methylcobalamin before surgery.The visual acuity changes and complications after admission and treatment were examined and recorded in both groups.The effective rate,unblinding rate and complications after treatment were compared between the two groups.Results There were no statistically significant differences between observation group and control group in terms of age,gender,time from injury to surgery,preoperative GCS score,operative time,and intraoperative bleeding volume(P>0.05).After treatment,the effective rate of observation group was 54.1%and the unblinding rate was 35.1%,while the effective rate of control group was 46.7%and the unblinding rate was 33.3%;there was no statistically significant difference between the effective rate and unblinding rate of the two groups(P>0.05).No serious complications such as cerebrospinal fluid leakage,epilepsy,and intracranial infection occurred in both groups after surgery.In observation group,the effective rate after treatment was significantly lower in those with optic nerve canal fractures than that in those without optic nerve canal fractures(P<0.05);the effective rate was significantly higher in patients with injury-to-operation time≤7 d than that in patients with injury-to-operation time>7 d(P<0.05).Conclusion Total optic nerve canal decompression can improve the visual acuity of patients without photoreceptor TON and reduce the blinding rate,which is an effective surgical treatment method.
9.The biological function and mechanism of IDH1 gene in intrahepatic cholangiocarcinoma cell HuCCT1
Mei-Jia LIN ; Yu-Qing LEI ; Zhou-Jie YE ; Li-Ping ZHU ; Xin-Rui WANG ; Xiong-Fei HUANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):194-203
Objective To explore the role and possible molecular mechanism of Isocitrate dehydrogenase 1(IDH1)gene in proliferation and migration of intrahepatic cholangiocarcinoma(iCCA)cell HuCCT1.Methods HuCCT1 cells with IDH1 gene knockout(HuCCT1IDH1-/-)were constructed by CRISPR/Cas9 gene editing technology.To investigate the capacities of proliferation,migration and invasion of HuCCT1WT(HuCCT1 cells with wild-type IDH1 gene)and HuCCT1IDH1-/-cells,assays of CCK-8,clone formation,scratch and transwell were performed.Western blotting was used to detect the expression levels of epithelial-mesenchymal transition(EMT)associated proteins E-cadherin,N-cadherin,Vimentin,MMP-9,Wnt3a and β-catenin in two groups of cells.The transcriptome sequencing data of HuCCT1WT and HuCCT1IDH1-/-cells were analyzed by bioinformatics methods,Western blotting was used to verify the expression of signaling pathway-related proteins.Results Compared with HuCCT1WT cells,HuCCT1IDH1-/-cells showed the number of proliferation and clone formation significantly reduced(P<0.05),the proportion of cells blocked in G2/M phase was significantly increased(P<0.01),the rate of scratch healing was significantly decreased(P<0.01),and the number of migrated cells(P<0.001)and invaded cells(P<0.05)was significantly reduced.qRT-PCR assay showed that the expression levels of IDH1,Vimentin,MMP-9 and genes related to the regulation of G2/M cycle proliferation,Cyclin A2,Cyclin B1 and CDK1 mRNA were down-regulated in HuCCT1IDH1-/-cells(P<0.05),and the expression of CDH1 mRNA encoding E-cadherin was up-regulated(P<0.01);Western blotting assay showed that the expression level of E-cadherin in HuCCT1IDH1-/-cells was significantly increased(P<0.05),and the expression level of N-cadherin,Vimentin and MMP-9 protein was significantly decreased(P<0.05)than that in HuCCT1WT cells.Data of transcriptome sequencing revealed 1476 differentially expressed genes(DEGs)between two groups of HuCCT1 cells.Go enrichment analysis showed the DEGs were significantly enriched in cell biological processes associated with inflammatory response,cell signaling and cell metabolism.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis suggested that the DEGs may be involved in some signaling pathways such as Wnt,MAPK,Rap1,Hippo and TNF,which are closely related to the regulation of proliferation and invasion of tumor cells.Western blotting verification results showed that compared with HuCCT1WT cells,the relative expression of Wnt3a and β-catenin proteins of HuCCT1IDH1-/-cells was significantly decreased(P<0.05).Conclusions IDH1 gene may participate in the control of biological functions of HuCCT1 cells,including cell proliferation,migration,invasion and epithelial mesenchymal transition.The mechanism may be related to the activation of the Wnt/β-catenin signaling pathway.
10.The changes of volume and dose in adaptive re-planning during radiotherapy for nasopharyngeal carcinoma
Sijuan HUANG ; Wenxing ZHONG ; Yuxi CHEN ; Enting LI ; Feifei LIN ; Yalan TAO ; Zhangmin LI ; Dehuan XIE ; Yong SU ; Xin YANG
Chinese Journal of Radiation Oncology 2024;33(3):197-204
Objective:To investigate the necessity of adaptive re-planning during radiotherapy for nasopharyngeal carcinoma (NPC) and its impact on dose improvement.Methods:Clinical data of 89 NPC patients admitted to Sun Yat-sen University Cancer Center from July 2014 to December 2017 were retrospectively analyzed. All patients received 25+7 rounds of adaptive re-planning during radiotherapy. Plan-A was defined as the initial CT scan-based 25-fraction radiotherapy plan, while plan-B was defined as the re-planned 7-fraction radiotherapy plan based on a subsequent CT scan. The changes in the target and parotid gland volumes were compared between plan-A and plan-B. Plan-I was a one-time simulation of plan-A extended to 32 fraction radiotherapy plan, and plan-II was generated through registration and fusion of the plan-A and plan-B for adaptive re-planning. The differences in dose metrics, homogeneity index (HI), conformity index (CI), and dose to organs at risk (OAR) were compared between plan-I and plan-II. Statistical analysis was performed by using paired t-test. Results:Compared with plan-A, the gross tumor volume of massive bleeding lesions (GTV nx) and parotid gland volume of plan-B were decreased by 13.14% and 11.12%, respectively (both P<0.001). While planning clinical target volume of metastatic lymph nodes (PCTV nd) of plan-B was increased by 7.75%( P<0.001). There were significant changes in the lymph nodes of plan-A and plan-B. The D mean, D 5%, D 95% of massive bleeding lesions planning target volume (PTV nx) and D 5% of high risk planning target volume (PTV1) in plan-II were all significantly higher than those in plan-I (all P<0.05). The CI of PTV nx and PTV1 in plan-II was closer to 1 than that in plan-I. In all assessed OAR, the D mean, D 50%, and D max of plan-II were significantly lower than those of plan-I (all P<0.05). Conclusions:During radiotherapy, NPC patients may experience varying degrees of primary tumor shrinkage, parotid gland atrophy, and lymph node changes. It is necessary to deliver re-planning and significantly improve the dose of target areas and OAR.

Result Analysis
Print
Save
E-mail