1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
3.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
4.Evidence-based research on the nutritional and health effects of functional components of tea
Zhijian HE ; Yuping LI ; Fan BU ; Jia CUI ; Xinwen BI ; Yuanjie CUI ; Zhiyuan GUO ; Ming LI
Shanghai Journal of Preventive Medicine 2025;37(2):190-198
As a traditional nutritional and healthy cash crop in China, tea has certain significance in promoting human health and preventing and controlling chronic diseases. Studies have shown that the nutritional health effect of tea is due to its rich functional components, mainly including tea polyphenols, tea pigments, tea polysaccharides, theanine, alkaloids and other bioactive substances. At present, researchers from the academic circles have continuously carried out animal and human experiments on the health effects of various functional components of tea, which has accumulated abundant research data and materials. Based on this, this article reviews the literature on the nutritional and health effects of the main functional components of tea, and adopts the method of evidence-based research to screen and extract relevant data for qualitative and quantitative meta-analysis. Subsequently, the nutritional health effects of the five functional components of tea, namely tea polyphenols, tea pigments, tea polysaccharides, theanine, and alkaloids, are summarized and outlined. Studies have shown that tea polyphenols, tea pigments, tea polysaccharides, theanine and alkaloids have different health effects and are expected to play their unique roles in promoting human health and preventing and controlling diseases.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.Therapeutic effect and mechanism of the topical preparation of baicalein on atopic dermatitis
Deng WANG ; Zhongying FAN ; Qinglong GUO ; Xi LI ; Yujie BAI ; Libin WEI ; Yuan HE
Journal of China Pharmaceutical University 2025;56(1):99-109
To evaluate the therapeutic effect of baicalein topical preparation on atopic dermatitis, we first constructed two atopic dermatitis-like mouse models induced by calcipotriol and 1-fluoro-2,4-dinitrobenzene to assess their therapeutic effect with skin tissue staining and other experiments. It was found that topical preparation of baicalein could alleviate epidermal thickening of diseased skin tissues, repair damaged skin barrier proteins, and inhibit T helper 2 cells (Th2) infiltration and mast cell infiltration and activation in lesional sites. Cyberpharmacology was utilized to analyze whether baicalein could treat atopic dermatitis by interfering with multiple pathogenesis-associated pathways. Results indicated that baicalein reduced the mRNA levels of inflammatory factors and inhibited the phosphorylation of NF-κB p65 and STAT1 proteins in keratinocyte cells. Together, the topical preparation of baicalein may be effective in alleviating atopic dermatitis-like symptoms in mice by down-regulating the phosphorylation level of NF-κB in keratinocytes, thereby decreasing the expression of inflammatory factors in keratinocytes, which provides an idea and a theoretical basis for the topical preparation of baicalein for the treatment of inflammatory skin diseases such as atopic dermatitis.
9.Adhesion Mechanisms of Aquatic Fouling Organisms Mediated by Biomacromolecules
Dan HE ; Shi-Guo LI ; Ai-Bin ZHAN
Progress in Biochemistry and Biophysics 2025;52(7):1833-1852
Aquatic organisms can secrete biomacromolecules through specialized organs, tissues, or structures, enabling adhesion to underwater material surfaces and leading to severe biofouling issues. This phenomenon adversely impacts aquatic ecosystem health and human activities. Biofouling has emerged as an emerging global environmental challenge. Adhesion serves as the foundation of biofouling, representing a critical step toward a comprehensive understanding of the adhesion mechanisms of aquatic organisms. Biomacromolecules, including proteins, lipids, and carbohydrates, are the primary functional components in the adhesive substances of aquatic fouling organisms. Research indicates that these biomacromolecules exhibit diversity in types and characteristics across different aquatic organisms, yet their adhesion mechanisms show unifying features. Despite significant progress, there remains a lack of comprehensive reviews on the adhesion mechanisms mediated by biomacromolecules in aquatic fouling organisms, particularly on the roles of lipids and carbohydrates. Through a comprehensive analysis of existing literature, this review systematically summarizes the mechanistic roles of three classes of macromolecules in aquatic biofouling adhesion processes. Proteins demonstrate central functionality in interfacial adhesion and cohesion through specialized functional amino acids, conserved structural domains, and post-translational modifications. Lipids enhance structural stability via hydrophobic barrier formation and antioxidative protection mechanisms. Carbohydrates contribute to adhesion persistence through cohesive reinforcement and enzymatic resistance of adhesive matrices. Building upon these mechanisms, this review proposes four prospective research directions: optimization of protein-mediated adhesion functionality, elucidation of lipid participation in adhesion dynamics, systematic characterization of carbohydrate adhesion modalities, and investigation of macromolecular synergy in composite adhesive systems. The synthesized knowledge provides critical insights into underwater adhesion mechanisms of aquatic fouling organisms and establishes a theoretical foundation for developing mechanism-driven antifouling strategies. This work advances fundamental understanding of bioadhesion phenomena while offering practical guidance for next-generation antifouling technology development.
10.Progress of schistosomiasis control in the People’s Republic of China in 2024
Junyi HE ; Lijuan ZHANG ; Fan YANG ; Hui DANG ; Yinlong LI ; Suying GUO ; Shizhen LI ; Chunli CAO ; Jing XU ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(3):223-231
To understand the progress of, summarize the lessons learned from and analyze the challenges in the national schistosomiasis elimination program of China in 2024, this article presented the endemic situation of schistosomiasis and national schistosomiasis surveillance results in the People’s Republic of China in 2024. By the end of 2024, Shanghai Municipality, Zhejiang Province, Fujian Province, Guangdong Province and Guangxi Zhuang Autonomous Region continued to consolidate schistosomiasis elimination achievements, and 7 provinces of Jiangsu, Sichuan, Yunnan, Hubei, Hunan, Anhui and Jiangxi maintained the criteria of schistosomiasis transmission interruption. A total of 450 counties (cites, districts) were found to be endemic for schistosomiasis in China in 2024, including 26 061 endemic villages covering 73 630 500 residents at risk of infections. Among the 450 counties (cities, districts) endemic for schistosomiasis, 388 (86.22%) achieved the criteria of schistosomiasis elimination and 62 (13.78%) achieved the criteria of transmission interruption. In 2024, a total of 4 102 624 individuals received immunological tests for schistosomiasis in China, with 44 823 sero-positives identified (1.09% seroprevalence), and a total of 169 722 individuals received parasitological examinations, with 1 egg-positives detected. A total of 27 321 cases with advanced schistosomiasis were documented in China by the end of 2024. In 2024, a total of 575 686 bovines were raised in schistosomiasis-endemic villages of China, and 113 842 bovines received immunological tests, with 235 sero-positives detected (0.21% seroprevalence), while no egg-positives were identified among the 167 475 bovines receiving parasitological examinations. In 2024, snail survey was performed covering an area of 680 498.27 hm2 in China, and 190 778.66 hm2 snail habitats were identified, including 59.09 hm2 emerging snail habitats and 704.23 hm2 reemerging snail habitats. In 2024, a total of 19 665 schistosomiasis patients receiving chemotherapy with praziquantel in China, and expanded chemotherapy was given to humans at 571 722 person-times and to bovines at 306 740 herd-times. In addition, snail control with chemical treatment covered 117 111.37 hm2 snail habitats across China in 2024, and the actual area of chemical treatment was 66 562.95 hm2, while environmental improvements were performed in snail habitats covering an area of 1 374.26 hm2. The national schistosomiasis surveillance results showed that the mean prevalence rates of Schistosoma japonicum infections were both 0 among humans and bovines in China in 2024, and no S. japonicum infection was detected in snails. These data demonstrated that the prevalence of schistosomiasis remained at a low level in China in 2024; however, the areas of snail habitats remained high and the number of fenced cattle showed a slight increase. To address these risks, it is imperative to maintain the integrated strategy with an emphasis on management of the source of S. japonicum infection and intensified snail control in high-risk areas, and to reinforce schistosomiasis surveillance and forecast and snail control in high-risk areas.

Result Analysis
Print
Save
E-mail