1.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
2.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
3.Association between types of obesity and atherosclerotic cardiovascular disease risk among hypertensive patients
GUO Yanqiang ; ZHANG Li ; ZHANG Lan ; HAN Rongrong
Journal of Preventive Medicine 2026;38(1):36-42
Objective:
To explore the association between types of obesity and 10-year risk of atherosclerotic cardiovascular disease (ASCVD) among hypertensive patients, so as to provide the basis for formulating ASCVD prevention strategies for hypertensive patients.
Methods:
From January to December 2021, hypertensive patients who were under follow-up management and completed health examinations at three community health service centers in Linping District, Hangzhou City were selected by a cluster sampling method. Basic information, lifestyle, disease history, height, weight, waist circumference (WC), and blood biochemical indicators were collected through health examination data. Based on assessments of body mass index (BMI) and WC, participants were categorized into four types: non-obese, general obesity only, central obesity only, and combined obesity. The Prediction for ASCVD risk in China (China-PAR) was used to assess 10-year ASCVD risk, which was categorized as low, moderate, and high risk. Multivariable logistic regression models were used to analyze the association between different types of obesity and ASCVD risk among hypertensive patients.
Results:
A total of 10 408 hypertensive patients were included, with a median age of 68.00 (interquartile range, 10.00) years. There were 4 301 (41.32%) males and 6 107 (58.68%) females. The proportions of non-obese, general obesity only, central obesity only, and combined obesity were 34.93% (3 635 individuals), 22.85% (2 378 individuals), 4.32% (450 individuals), and 37.90% (3 945 individuals), respectively. There were 3 389 (33.52%) cases at high risk of ASCVD. Among them, high ASCVD risk was observed in 1 107 (30.45%), 896 (37.68%), 122 (27.11%), and 1 364 (34.58%) patients with non-obese, general obesity only, central obesity only, and combined obesity, respectively. Multivariable logistic regression analysis showed that after adjusting for gender, age, smoking, drinking, physical activity, and diabetes, the risk of high ASCVD in hypertensive patients with general obesity only and combined obesity was 1.383 times (95%CI: 1.235-1.548) and 1.225 times (95%CI: 1.109-1.354) that of non-obese hypertensive patients, respectively.
Conclusions
General obesity only and combined obesity can increase the 10-year high risk of ASCVD among hypertensive patients. It is necessary to strengthen comprehensive management of body weight and WC among hypertensive patients to reduce the risk of ASCVD.
4.Effect and Mechanism of Schisandrae Chinensis Fructus Lignans on Behavior of Schizophrenic Mice
Jiaqi LI ; Xi CHEN ; Siwei WANG ; Qi WANG ; Yiting LIU ; Ziyan GUO ; Zilong LUN ; Chengyi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):65-71
ObjectiveTo investigate the effects of Schisandrae Chinensis Fructus lignans on schizophrenia induced by dizocilpine maleate (MK-801) in mice and to clarify its mechanism. MethodsMale mice of 4-6 weeks old were randomized into blank, model, positive drug, and low-, medium-, and high-dose (40, 80, 160 mg·kg-1, respectively) Schisandrae Chinensis Fructus lignans groups. The blank group was administrated with distilled water, and the other groups were injected with 0.5 mg·kg-1 MK-801 to induce schizophrenia symptoms. Meanwhile, risperidone was injected at 0.2 mg·kg-1 in the positive drug group, and mice in the intervention groups were injected with corresponding drugs for 14 consecutive days. The behavioral changes of mice were observed by autonomous activity test, open field test, forced swimming test, and water maze test. The levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the brain and tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in peripheral blood were quantified by enzyme-linked immunosorbent assay (ELISA). The changes in the prefrontal lobe of mice were observed by hematoxylin-eosin staining, and the changes of the hippocampal tissue were observed by Nissl staining. The protein levels of silencing information regulatory factor 1 (SIRT1) and forkhead box protein O3a (FoxO3a) in the hippocampus of mice were determined by Western blot. ResultsCompared with the model group, low, medium, and high doses of Schisandrae Chinensis Fructus lignans reduced the total number of autonomous activities, total distance in the open field test, immobile time in the forced swimming test, and levels of TNF-α and NF-κB in peripheral blood (P<0.05), while increasing the number of platform crossings in the water maze test and DA and 5-HT levels in the brain tissue (P<0.05). Compared with the model group, risperidone and low, medium, and high doses of Schisandrae Chinensis Fructus lignans improve the neural cell morphology in the CA1 region, with full cells in neatly dense arrangement and exhibiting clear membrane boundary. Schisandrae Chinensis Fructus lignans inhibited the expression of SIRT 1 and FoxO3a in the hippocampus (P<0.05). ConclusionTo sum up, Schisandrae Chinensis Fructus lignans may improve the behavior of schizophrenic mice by activating the SIRT1/FoxO3a signaling pathway to exert neuroprotective effects.
5.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
6.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
7.Comparison of decompression effects between spine endoscopy hybrid technique and uniportal endoscopic surgery in treatment of lumbar spinal stenosis with bilateral symptom
Song GUO ; Xinhua LI ; Meijun YAN ; Yanbin LIU ; Zhong LIU ; Kewei LI ; Pengcheng LIU ; Beiting ZHANG ; Qiang FU
Chinese Journal of Tissue Engineering Research 2025;29(3):517-523
BACKGROUND:Spinal canal decompression using uniportal endoscopic surgery is a new minimally invasive surgery in the treatment of lumbar spinal stenosis.However,this technique needs a steep learning curve and high requirements for surgical equipment and instruments,which limits its clinical application.We previously use the spinal endoscopy as a monitoring endoscopy and combined with unilateral biportal endoscopy to propose a hybrid technique of spinal endoscopy to achieve coaxial endoscopic operation and hands-separate operation. OBJECTIVE:To compare the clinical outcome of hybrid technique and uniportal endoscopic surgery in treatment of lumbar spinal stenosis with bilateral lower limb pain symptoms. METHODS:Ninety patients diagnosed of lumbar spinal stenosis with bilateral symptoms were included and retrospectively analyzed at First People's Hospital,Shanghai Jiao Tong University from August 2020 to August 2022.44 cases were included in group A(hybrid technique group),while 46 cases were included in group B(uniportal endoscopic surgery).The nerve decompression was observed during the surgery.Operation time,hospital stay time,and expenses were recorded in both groups.The visual analog scale scores of lower back pain and both lower extremities pain,Oswestry disability index scores of quality of life and excellent and good rate of modified Macnab criteria were recorded and compared at preoperative,postoperative 3 days,and postoperative 3 and 6 months. RESULTS AND CONCLUSION:(1)The operation time of group A was significantly shorter than that of group B(P<0.05).(2)The lower back pain and lower extremity pain of the severe side at postoperative 3 days,and 3 and 6 months were significantly relieved in both groups(P<0.05).The visual analog scale score of lower extremity pain on the mild side was significantly decreased at postoperative 3 days,3 and 6 months than preoperative score in the group A(P<0.05).The visual analog scale score of lower extremity pain on the mild side was significantly decreased at postoperative 3 days than preoperative score in the group B(P<0.05).The visual analog scale scores of lower extremity pain on the mild side at postoperative 3 and 6 months did not show significant difference than preoperative score in the group B.The comparison between the two groups showed that there was no significant difference in the visual analog scale scores of postoperative lower back pain and lower extremity pain of the severe side(P>0.05).The visual analog scale scores of lower extremity pain on the mild side in the group A were significantly lower than those of group B at postoperative 3 and 6 months(P<0.05).(3)The Oswestry disability index scores of both groups at postoperative 3 day were significantly lower than preoperative score(P<0.05),and there was no significant difference between the two groups 3 days after operation.Oswestry disability index scores of group A at postoperative 3 and 6 months were significantly decreased than preoperative score(P<0.05).The Oswestry disability index scores of group B at postoperative 3 and 6 months did not show significant differences than preoperative score(P>0.05).The comparison between the two groups showed the Oswestry disability index scores of group A were significantly lower than group B at postoperative 3 and 6 months(P<0.05).(4)The results of modified Macnab showed that the excellent and good rate of group A was significantly higher than that of group B(95%,78%,P<0.05).(5)It is indicated that the hybrid technique is a new spinal endoscopy technique,which has the advantages of less trauma and faster recovery as a minimally invasive surgery.The clinical outcome of hybrid technique is superior to that of uniportal endoscopic surgery in the treatment of lumbar spinal stenosis with bilateral symptoms.Additionally,it also has the advantages of good operational flexibility and high decompression efficiency as an open surgery.
8.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.
9.Effect of transcranial magneto-acousto-electrical stimulation on the plasticity of the prefrontal cortex network in mice
Shuai ZHANG ; Zichun LI ; Yihao XU ; Xiaofeng XIE ; Zhongsheng GUO ; Qingyang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1108-1117
BACKGROUND:Transcranial magneto-acoustic-electrical stimulation is a novel non-invasive neural regulation technique that utilizes the induced electric field generated by the coupling effect of ultrasound and static magnetic field to regulate the discharge activity of the nervous system.However,the mechanism by which it affects synaptic plasticity in the brain is still not enough. OBJECTIVE:To explore the effect of transcranial magneto-acoustic-electrical stimulation intensity on synaptic plasticity of the prefrontal cortex neural network in mice. METHODS:(1)Animal experiment:Twenty-four C57 mice were equally and randomly divided into four groups:the control group receiving pseudo-stimulation,the 6.35 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,6.35 W/cm2,the 17.36 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,17.36 W/cm2,and the 56.25 W/cm2 stimulation group receiving coupled stimulation of 0.3 T,56.25 W/cm2.The local field potential signals and behavioral correctness were recorded during the execution of T-maze in mice.(2)Modeling and simulation experiments:A neural network model of the prefrontal cortex in mice stimulated by transcranial magneto-acoustic-electrical stimulation was constructed to compare the structural connectivity characteristics of the neural network under different stimulation intensities. RESULTS AND CONCLUSION:Transcranial magneto-acoustic-electrical stimulation could effectively shorten the behavior learning time,improve the working memory ability of mice(P<0.05),and continue to stimulate the frontal lobe of mice after learning behavior.There was no significant difference in the accuracy of the T-maze behavioral experiment among the experimental groups(P>0.1).Analysis of local field potential signals in the frontal lobe of mice revealed that transcranial magneto-acoustic-electrical stimulation promoted energy enhancement of β and γ rhythms.As the stimulation intensity increased,there was an asynchronous decrease in β and γ rhythms.Through β-γ phase amplitude coupling,it was found that stimuli could enhance the neural network's ability to adapt to new information and task requirements.Modeling and simulation experiments found that stimulation could enhance the discharge level of the neural network,increase the long-term synaptic weight level,and decrease the short-term synaptic weight level only when the stimulation intensity was high.To conclude,there is a complex nonlinear relationship between different stimulus intensities and the functional structure of neural networks.This neural regulation technique may provide new possibilities for the treatment of related neurological diseases such as synaptic dysfunction and neural network abnormalities.
10.Research hotspots and frontiers of stem cells for Alzheimer's disease
Liugang XIE ; Shuke CUI ; Nannan GUO ; Aoyu LI ; Jingrui ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1475-1485
BACKGROUND:Stem cells can promote nerve regeneration,repair damaged nerves,inhibit inflammation and apoptosis of nerve cells,and provide a new way for the treatment of Alzheimer's disease. OBJECTIVE:To make a bibliometrical analysis of the articles on stem cell therapy for Alzheimer's disease published internationally from 2004 to 2023,in order to reveal the research hotspot and trend of stem cell therapy for Alzheimer's disease. METHODS:From the Web of Science Core Collection database,by using Excel,VOSviewer,and Citespace software,the annual number of publications,countries,institutions,journals/co-cited journals,authors,and keywords of articles related to stem cells and Alzheimer's disease published from January 1,2004 to October 31,2023 were visually analyzed. RESULTS AND CONCLUSION:A total of 3 521 core papers were included,and the number of published papers increased year by year.The United States is the country with the most papers.Harvard Medical School is the most prolific institution.Maiese kenneth is the author with the most papers.International Journal of Molecular Sciences has the most papers in this field.The journal PLoS One published the most citations.At present,the field of stem cell therapy for Alzheimer's disease focuses on pathophysiological mechanism and animal experimental research,and"neurogenesis","oxidative stress","extracellular vesicles",and"mesenchymal stem cells"are the research trends in this field.Stem cell therapy for Alzheimer's disease has broad prospects.In the future,exchanges and cooperation between institutions and authors should be strengthened to further explore the main mechanism of stem cell therapy for Alzheimer's disease,solve possible clinical problems such as immune rejection,effectiveness,and safety,and further tap the potential of stem cells in the treatment of Alzheimer's disease.


Result Analysis
Print
Save
E-mail