1.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
2.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
3.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
4.Improvement effects and mechanism of total secondary ginsenosides on hypertrophic changes in cardiomyocytes
Bin LI ; Jia LI ; Zhongjie YUAN ; Mingjun ZHU ; Shiyang XIE ; Yuan GAO ; Rui YU ; Xinlu WANG
China Pharmacy 2025;36(12):1430-1435
OBJECTIVE To investigate the ameliorative effects and potential mechanism of total secondary ginsenosides (TSG) on hypertrophic changes of primary cardiomyocytes stimulated by angiotensin Ⅱ (Ang Ⅱ). METHODS Primary cardiomyocytes were isolated from the hearts of neonatal SD rats and divided into the following groups: control group, AngⅡ group (2 µmol/L), TSG group (7.5 µg/mL), PFK-015 group [6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) inhibitor, 10 nmol/L], and TSG+PFK-015 group (TSG 7.5 µg/mL+PFK-015 10 nmol/L). The surface area, protein synthesis, energy metabolism-related indicators [free fatty acid (FFA), coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA)], and the expressions of glycolysis-related factors [hypoxia-inducible factor 1α (HIF-1α), glucose transporter protein 4 (GLUT-4), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and PFKFB3] in primary cardiomyocytes of each group were measured. RESULTS Compared with the control group, the surface area of primary cardiomyocytes and protein synthesis were significantly increased, the content of FFA, protein and mRNA expressions of HIF-1α, LDHA, PDK1 and PFKFB3 were significantly increased or up-regulated in the AngⅡ group, while the contents of CoA and acetyl-CoA, the protein and mRNA expressions of GLUT-4 were significantly decreased or down-regulated (P<0.05). Compared with the AngⅡ group, both TSG group and PFK-015 group showed significant improvements in these indexes, with the TSG+PFK-015 group generally demonstrating superior effects compared to either treatment alone (P<0.05). CONCLUSIONS TSG can reduce the surface area of AngⅡ-induced primary cardiomyocytes, decrease protein synthesis, and inhibit their hypertrophic changes. These effects may be related to improving energy metabolism and the inhibition of glycolysis activity.
5.Preliminary study on the biological characteristics of heat shock cognate protein 20 of Schistosoma japonicum
Xingang YU ; Kaijian YUAN ; Yilong LI ; Xuanru MU ; Hui XU ; Qiaoyu LI ; Wenjing ZENG ; Zhiqiang FU ; Yang HONG
Chinese Journal of Schistosomiasis Control 2025;37(3):294-303
Objective To clone and express the heat shock cognate protein 20 (SjHsc20) of Schistosoma japonicum, and to preliminarily investigate its biological characteristics. Methods The target fragment of the SjHsc20 gene was amplified using PCR assay and cloned into the pET-28a(+) expression plasmid to generate the recombinant expression vector pET-28a(+)-SjH-sc20, which was then transformed into Escherichia coli BL21 (DE3) competent cells. The recombinant SjHsc20 (rSjHsc20) protein was induced with isopropyl β-D-thiogalactopyranoside (IPTG) and purified, and the expression of the rSjHsc20 protein was checked with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The immunogenicity of the rSjHsc20 protein was detected using Western blotting, and the transcriptional levels of SjHsc20 were quantified in S. japonicum worms at different developmental stages and in male and female adult worms using real-time quantitative PCR (RT-qPCR) assay. Thirty female BALB/c mice at ages 6 to 8 weeks were divided into three groups, including the rSjHsc20 immunization group, the PBS control group, and the ISA 206 adjuvant group, of 10 mice in each group. Mice in the rSjHsc20 immunization group were subcutaneously immunized with 20 μg rSjHsc20 on days 1, 15 and 31, and animals in the PBS control group were subcutaneously injected with the same volume of PBS on days 1, 15 and 31, while mice in the ISA 206 adjuvant group were subcutaneously immunized with the same volume of ISA 206 adjuvant on days 1, 15 and 31, respectively. All mice in each group were infected with (40 ± 2) S. japonicum cercariae via the abdomen 14 day following the last immunization. Levels of serum specific IgG and its subtypes IgG1 and IgG2 antibodies against rSjHsc20, and the serum titers of anti-rSjHsc20 antibody were detected in mice using indirect enzyme-linked immunosorbent assay (ELISA). All mice were sacrifice 42 days post-infection, and S. japonicum worms were collected from the hepatic portal vein and counted. The eggs per gram (EPG), worm burden reductions and egg burden reductions were estimated to evaluate the protective efficacy of the rSjHsc20 protein. Results The SjHsc20 gene had an open reading frame (ORF) with 756 bp in length and encoded 252 amino acids, and the rSjHsc20 protein had a relative molecular mass of approximately 29 kDa. The rSjHsc20 protein was recognized by the serum of mice infected with S. japonicum and the serum of mice immunized with the rSjHsc20 protein, indicating that rSjHsc20 had a good immunogenicity. There was a significant difference in the transcriptional levels of the SjHsc20 gene among the 7-day (1.001 4 ± 0.065 7), 12-day (2.268 3 ± 0.129 2), 21-day (1.378 5 ± 0.160 4), 28-day (1.196 4 ± 0.244 0), 35-day (1.646 3 ± 0.226 1), 42-day worms of S. japonicum (1.758 0 ± 0.611 1) (F = 38.45, P < 0.000 1), and the transcriptional level of the SjHsc20 gene was higher in the 12-day worms than in worms at other developmental stages (all P values < 0.000 1). The serum levels of anti-rSjHsc20 IgG antibody were 0.106 6 ± 0.010 7, 0.108 3 ± 0.010 4, and 0.553 2 ± 0.069 1 in the PBS control group, ISA 206 adjuvant group, and rSjHsc20 immunization group following the last immunization, respectively, and the serum levels of IgG1 antibody were 0.137 3 ± 0.054 0, 0.181 1 ± 0.096 8, and 1.765 8 ± 0.221 1, while the levels of IgG2a antibody were 0.280 3 ± 0.197 6, 0.274 0 ± 0.146 3, and 1.560 4 ± 0.106 0, respectively. There were significant differences in the serum levels of anti-rSjHsc20 IgG (F = 397.70, P < 0.000 1), IgG1 (F = 401.00, P < 0.000 1) and IgG2a antibodies (F = 229.70, P < 0.000 1) among the three groups, and the serum levels of anti-rSjHsc20 IgG, IgG1 and IgG2a antibodies were higher in the rSjHsc20 immunization group than in the PBS control group and the ISA 206 adjuvant group (all P values < 0.000 1). There was a significant difference in the IgG1/IgG2a ratio among the rSjHsc20 immunization group (1.177 2 ± 0.143 6), the PBS control group (0.428 4 ± 0.199 8) and the ISA 206 adjuvant group (0.559 9 ± 0.181 1) (F = 43.97, P < 0.000 1), and the IgG1/IgG2a ratio was > 1 in the rSjHsc20 immunization group, which was higher than in the PBS control group and the ISA 206 adjuvant group (both P values < 0.000 1). The titers of serum anti-rSjHsc20 antibody were all above 1∶16 384 in the rSjHsc20 immunization group following immunizations on days 1, 15 and 31, indicating that the rSjHsc20 protein had a strong immunogenicity. The mean worm burdens were (16.60±5.75), (15.80±5.58) worms per mouse and (14.40±5.75) worms per mouse in the PBS control group, the ISA 206 adjuvant group and the rSjHsc20 immunization group 42 days post-infection with S. japonicum cercariae (F = 0.50, P > 0.05), and the EPG were 68 370 ± 22 690, 67 972 ± 19 502, and 41 075 ± 13 251 in the PBS control group, the ISA 206 adjuvant group and the rSjHsc20 immunization group (F = 4.55, P < 0.05), with lower EPG in the PBS control group and the ISA 206 adjuvant group than in the rSjHsc20 immunization group (both P values < 0.05). Immunization with the rSjHsc20 protein resulted in a worm burden reduction of 13.25% and an egg burden reduction of 39.92% relative to the PBS control group. Conclusions SjHsc20 is successfully cloned and expressed, and the rSjHsc20 protein induces partial immunoprotective effects in mice, which provides a basis for deciphering the biological functions of SjHsc20 and assessing the potential of SjH-sc20 as a vaccine candidate.
6.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
7.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
8.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
9.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
10.Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells/resveratrol liposomes for traumatic brain injury treatment
Wenya CHI ; Yan YUAN ; Weilin LI ; Tongyu WU ; Yuan YU
Journal of Pharmaceutical Practice and Service 2025;43(2):67-74
Objective To prepare a thermosensitive hydrogel scaffold loaded with bone marrow mesenchymal stem cells(BMSCs) and resveratrol liposomes (RSV-LIP) to form a therapeutic unit and evaluate its treatment efficacy for traumatic brain injury (TBI). Methods BMSCs were extracted from rats, and RSV-LIP was prepared and characterized. Cell models were constructed to investigate the pharmacological effects of BMSCs combined with RSV-LIP. BMSCs and RSV-LIP were then loaded into the hydrogel, and a TBI mouse model was established to evaluate the therapeutic effects of the hydrogel. Results The RSV-LIP had a particle size of 127.8 nm, a Zeta potential of −4.9 mV, an encapsulation efficiency of 78.50%, and a drug loading content of 2.37%. Live-dead staining indicated good biocompatibility of the hydrogel. The combination of BMSCs and RSV-LIP significantly inhibited TNF-α and reduced ROS levels, promoting cell migration in scratch assays. Compared to the control group, the hydrogel group showed significantly lower mNSS scores (P<0.01), higher hanging scores (P<0.001), and reduced stepping errors (P<0.001). Conclusion The combination of BMSCs and RSV-LIP exhibited antioxidative stress, anti-inflammatory, and neurogenic cell migration-promoting effects. When loaded into a hydrogel scaffold and locally implanted, it could improve the motor and sensory functions in TBI mice.

Result Analysis
Print
Save
E-mail