1.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
2.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
3.Theoretical Exploration of Same "Etiology-Mechanism-Syndrome-Treatment-Prevention" in Insomnia and Skin Aging
Bo XU ; Miao ZHU ; Kang SUN ; Yuan PENG ; Ping WANG ; Li YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):72-78
Sleep, skin, and health are closely interconnected. Clinically, insomnia has a high incidence and is often accompanied by or secondary to skin aging. The two conditions exhibit "different diseases with the same syndrome", significantly affecting the physical and mental health of the Chinese population. Preventing and treating skin aging by improving insomnia is an important strategy, with the principle of "treating different diseases with the same approach" serving as a crucial therapeutic guideline. However, effective clinical prevention and treatment methods for both conditions remain lacking. Traditional Chinese medicine (TCM) has a profound theoretical foundation and notable efficacy in the concurrent treatment of insomnia and skin aging, yet there are few reports on the etiology, pathogenesis, therapeutic principles, and treatment methods of their shared treatment, warranting further exploration. Based on holistic view and syndrome differentiation and treatment in TCM, this study systematically investigates the theoretical origins of the shared manifestations of insomnia and skin aging from multiple dimensions, including etiology, pathological location, pathogenesis, disease nature, and prevention and treatment strategies. As early as Huangdi's Internal Classic (Huangdi Neijing), it was recognized that mental clarity during the day, sound sleep at night, and firm, healthy skin are key indicators of external health, whereas daytime lethargy, poor sleep quality, and dry, withered skin are prominent signs of aging. Maintaining mental clarity during the day and restful sleep at night is essential for skin integrity and healthy aging. Later medical scholars proposed that the common etiology of insomnia and skin aging lies in "internal-external interactions", with the pathological location involving "the five organ systems". The primary pathogenesis includes "deficiency, fire, stagnation, phlegm, and blood stasis", while the disease nature is often characterized by "a combination of deficiency and excess". Treatment should be guided by syndrome differentiation, following the principle of balancing Yin and Yang. This theoretical exploration enriches and advances TCM understanding of disease onset and prevention, providing theoretical guidance for the clinical prevention and treatment of insomnia-associated skin aging and contributing to the realization of the "Healthy China" initiative.
4.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
5. Exploration of molecular mechanism of Selaginella moelledorffii Hieron. in treatment of laryngeal cancer based on network-based pharmacology, molecular docking techniques and experimental validation
Yuan-Yuan LI ; Xin-Zhou YANG ; Si-Si WANG ; Wen-Qi LIU ; Li KANG ; Xin-Zhou YANG ; Sefidkon FATEMEH
Chinese Pharmacological Bulletin 2024;40(2):352-362
Aim To explore the molecular mechanism of Selaginella moelledorffii Hieron. in the treatment of laryngeal cancer. Methods According to the relevant literature reports, the chemical constituents of S. moellendorffii were obtained, and the active ingredients were screened out through the SwissADME database, and the targets were screened through the PharmMapper database. The laryngeal cancer-related targets were collected by searching OMIM and other databases, and the Venny 2.1.0 online platform was used to obtain the intersection of the two. Protein interaction analysis of the potential targets was performed using the STRNG platform. GO functional analysis and KEGG pathway analysis was carried out using DAVID database. Visual networks were built with Cytoscape 3.8.0 software. Molecular docking was validated by SYBYL-X 2. 0 software. MTT method, Hoechst 33258 staining method and Western blotting were also used for validation. Results At the molecular level, a total of 110 active ingredients of S. moellendorffii and 82 drug targets were screened out, 1,608 targets related to laryngeal cancer, and intersection of 34 targets. GO analysis yielded 135 entries, and KEGG analysis yielded a total of 61 pathways. Molecular docking results showed that the 11 key active ingredients such as 2", 3"-dihydrooch-naflavone wood flavonoids and 4 core target proteins such as MAPK1 had 95. 5% of good docking activity. At the cellular level, SM-BFRE was screened for its strongest inhibitory effect on laryngeal cancer cell proliferation through MTT assay. Furthermore, Hoechst 33258 staining showed that the decrease in Hep-2 cell viability produced by SM-BFRE was related to cell apoptosis. Finally, Western blot verified that SM-BFRE inhibited PI3K/Akt/NF through inhibition- K B/COX-2 pathway to induce apoptosis in laryngeal cancer cells. Conclusions To sum up, it fully reflects the multicomponent, multi-target, and multi-channel synergistic effect of S. moellendorffii in the treatment of laryngeal cancer, and provides a theoretical reference for further elucidation of the mechanism of action of S. moellendorffii in the treatment of laryngeal cancer.
6.The role of CB2 in accelerating orthodontic tooth movement
Dengying FAN ; Haoyan ZHAI ; Huijuan LIU ; Yuan ZHAO ; Dongna LI ; Xing QIAO ; Wenjing KANG ; Dechao ZHU ; Chunyan LIU
Acta Universitatis Medicinalis Anhui 2024;59(2):212-218
Objective To explore the effect of cannabinoid receptor 2(CB2)on orthodontic tooth movement(OTM)rate and periodontal tissue reconstruction of pressure area in mice.Methods Thirty CB2-/-male mice and thirty littermate control WT male mice were individually accepted the orthodontic appliance at their age of 6 weeks.The mice were respectively scarified at 3 days,7 days,14 days and 21 days after the operation.Then the tooth movement distance was examined through the stereomicroscope.Hematoxylin-eosin staining was performed to explore the biological responses of periodontium at the distal mesial root pressure area.Anti-tartrate acid phospha-tase staining was performed to calculate the number and distribution of osteoclasts at the distal mesial root pressure area,and MMP-9 was evaluated by immunohistochemistry to examine the number of MMP-9(+)monocytes and multinucleated cells in the same district as the TRAP staining.Results Compared with those WT mice at 3,7,14 and 21 days,OTM distance showed a gradual increased tendency according with experimental time over 21 days.The widths of periodontal ligament on the pressure side were markedly greater in CB2-/-mice than WT mice at 7,14 and 21 days(P<0.000 1).The numbers of TRAP positive osteoclasts were significantly greater in CB2-/-mice than those in WT mice at 14 days of OTM(P<0.001).MMP-9 immunohistochemical staining showed that the number of MMP-9(+)monocytes and multinucleated cells was more in CB2-/-mice than that in WT mice at 14 days of OTM(P<0.05).Conclusion The absence of CB2 accelerates orthodontic tooth movement under or-thodontic force.The absence of CB2 reinforces bone resorption in orthodontic tooth movement compressive area dur-ing orthodontic tooth movement.
7.Evaluation of perioperative nutritional status and body composition in patients with stomach neoplasms
Hong WANG ; Zhijie DING ; Yafang YE ; Lihui LIN ; Dandan KANG ; Yanping YUAN ; Lei LI
Chinese Journal of Practical Nursing 2024;40(10):772-779
Objective:To investigate the nutritional risk, incidence of malnutrition, and intake of three major energy-supplying nutrients, analyze changes in their body composition and the possible influencing factors in patients with stomach neoplasms during perioperative period in order to provide a theoretical basis for the nutritional management of patients with stomach neoplasms during perioperative period.Methods:This was a cross-sectional study. A total of 105 patients who underwent gastric cancer radical surgery in the Gastrointestinal Department of Zhongshan Hospital Affiliated to Xiamen University from June 2021 to May 2023 were taken as the research subjects using fixed-point continuous sampling method. They were recruited for screening and assessment using Nutritional Risk Screening 2002 (NRS 2002) and Patient-Generated Subjective Global Assessment (PG-SGA). Nutrients intake during the perioperative period were investigated using the 24-h recall method and dietary diary method, etc. Body compositions were measured using the bioelectrical resistance method.Results:Among the 105 patients, there were 78 males and 27 females, with an average age of (61.5 ± 10.3) years. About 83.8% (88/105) gastric cancer patients were at nutritional risk and 82.9% (87/105) were malnourished. The preoperative and postoperative energy intake were (1 646.1 ± 321.5) and (1 317.2 ± 365.8) kcal (1 kcal=4.184 kJ), respectively, which were significantly lower than the target amount of (1 896.7 ± 262.9) kcal, the difference was statistically significant ( t=6.23, 8.29, both P<0.05).The preoperative body mass, muscle mass, skeletal muscle, fat mass, and skeletal muscle index were (51.5 ± 9.6), (40.8 ± 6.0), (23.6 ± 4.0), (8.3 ± 4.9) kg, and 6.7 ± 0.8 respectively, while the postoperative values were (50.0 ± 9.1), (39.8 ± 6.0), (22.8 ± 3.6), (7.8 ± 5.2) kg, and 6.5 ± 0.8 respectively, with statistically significant differences between the two groups ( t values were 2.89-10.61, all P<0.05). Logistic multivariate regression analysis showed that the operation time ( OR=3.984, 95% CI 1.433-11.080, P<0.05) and energy satisfaction ( OR=0.053, 95% CI 0.005-0.610, P<0.05) were independent influencing factors for the degree of skeletal muscle loss. Conclusions:During perioperative period, the gastric cancer patients had poor nutritional status with insufficient nutrient intake and accelerated loss of body muscle and fat. Therefore, it was necessary to conduct a comprehensive nutritional evaluation for patients with stomach neoplasms during perioperative period in time and take steps to promote recovery by providing individualized nutritional therapy.
8.Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis
Zhijie KANG ; Zhenhua CAO ; Yangyang XU ; Yunfeng ZHANG ; Feng JIN ; Baoke SU ; Lidong WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Liang LIANG ; Mengmeng LI ; Yifei DU ; Lin LIN ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(6):840-846
BACKGROUND:Ankylosing spondylitis is a chronic inflammatory disease with chronic rheumatic immunity.Soft tissue ossification and fusion and spinal stiffness can cause biomechanical changes. OBJECTIVE:To reconstruct the lumbar-sacral intervertebral disc in ankylosing spondylitis patients with lumbar kyphosis by finite element analysis,and to study the range of motion of each segment of T11-S1 and the biomechanical characteristics of annulus fibrosus and nucleus pulposus. METHODS:The imaging data were obtained from an ankylosing spondylitis patient with lumbar kyphosis.The original CT image data of continuously scanned spine were imported into Mimics 21.0 in DICOM format,and T11-S1 was reconstructed respectively.The established model was imported into 3-Matic software in the format of"Stl"to reconstruct the intervertebral disc,and the fibrous intervertebral disc model was obtained.The improved model was further imported into Hypermesh software,and the vertebra,nucleus pulposus,annulus fibrosus and ligament were mesh-divided.After the material properties were given,the model was imported into ABAQUS software to observe the range of motion of each vertebral body in seven different working conditions of T11-S1,and analyze the biomechanical characteristics of each segment of annulus fibrosus and nucleus pulposus. RESULTS AND CONCLUSION:(1)The range of motion of L1 vertebrae was higher than that of other vertebrae under six different working conditions:extension,forward flexion,rotation(left and right),and lateral flexion(left and right).The maximum range of motion was 2.18° during L1 vertebral flexion,and the minimum range of motion was 0.12° during L5 vertebral extension.(2)The annular fiber flexion at L2-L3 segments was greater than the extension(P<0.05),and the annular fiber flexion at L3-L4 and L4-L5 segments was less than the extension(P<0.05).The left rotation of L1-L2 annular fibers was greater than the right rotation(P<0.05).The left flexion of the annulus was greater than the right flexion in L1-L2,L2-L3,L3-L4,L4-L5 and L5-S1 segments(P<0.05).(3)The nucleus pulposus stresses of T11-L12,L1-L2,L2-L3,L3-L4 and L4-L5 segments in forward flexion were greater than in extension(P<0.05).The left rotation of T12-L1 and L3-L4 segments was smaller than the right rotation(P<0.05),and that of T11-T12,L1-L2,and L2-L3 segments was larger than the right rotation(P<0.05).The left flexion was larger than the right flexion in the T11-S1 segment.(4)It is concluded that in ankylosing spondylitis patients with lumbar kyphosis,the minimum range of motion of the vertebral body is located at the L5 vertebral body in extension.To prevent fractures,it is recommended to avoid exercise in the extension position.During the onset of lumbar kyphosis in patients with ankylosing spondylitis,the maximum stress of the annulus fibrosus and nucleus pulposus is located in the L1-L2 segment,which is fixed and will not alter with the change of body position.The late surgical treatment and correction of deformity should focus on releasing the pressure of the annulus fibrosus and nucleus pulposus in this segment to avoid the rupture of the annulus fibrosus and the injury of the nucleus pulposus.
9.Visualization analysis of vascular stimulating scaffolds in bone tissue engineering
Yuan FANG ; Zhijie KANG ; Haiyan WANG ; Xiaohe LI ; Kai ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(17):2708-2715
BACKGROUND:The study of the physical properties of scaffolds has always been a hot topic in the field of tissue engineering research.However,for vascular stimulating scaffolds,in addition to meeting the basic performance of the scaffold,other methods are also needed to promote the regeneration of blood vessels within the scaffold,in order to achieve the ultimate goal of repairing bone tissue. OBJECTIVE:A visualization analysis was carried out on the literature published in and outside China on scaffold stimulation for bone tissue engineering,to explore the research hotspots and research status in this field,and to provide a reference for subsequent studies. METHODS:Using the CNKI database and Web of Science core database as retrieval databases,the relevant literature on vascular scaffolds for bone tissue engineering was retrieved.The literature that did not conform to the research object was removed.The obtained data were imported into CiteSpace 6.1.R2 software.Visualization analysis was performed on authors,national institutions,and keywords in the research field. RESULTS AND CONCLUSION:(1)China,the United States,and Germany were the top three countries with the most articles on scaffold stimulation for bone tissue engineering.(2)The top 3 institutions in the CNKI database were Southern Medical University,Huazhong University of Science and Technology,and Donghua University.In the core database of Web of Science,Shanghai Jiao Tong University,Sichuan University and Chinese Academy of Sciences ranked the top 3 in terms of the number of institutional publications.(3)The top 3 keywords in the CNKI database were"tissue engineering,vascularization,angiogenesis".The top 3 keywords in the Web of Science core database were"mesenchymal stem cell,scaffold,vascularization".(4)Through the analysis of co-citation and highly cited references,the main concerns were as follows:vascularization strategies:scaffold design,angiogenic factor delivery,in vitro co-culture,and in vivo pre-vascularization.Technology:3D printing,electrospinning,vascular transplantation,vascular fusion.Mechanisms:immune regulation and macrophages,drug/growth factor delivery,the relationship between endothelial cells and osteoblasts,the paracrine relationship between bone cells and endothelial cells,signaling molecular pathways,angiogenesis,and anti-angiogenesis molecules.(5)The researches concerning vascular stimulating scaffolds in bone tissue engineering in and outside China attach great importance to the application of stem cells and 3D printing technology.Current research focuses on biological 3D printing technology,scaffold modification methods,and the development and application of intelligent biomaterials based on bone repair mechanisms.
10.Comparing the Anti-oxidative Effects of "Three Decoctions for COVID-19"
Ximeng LI ; Yuan KANG ; Yuan GAO ; Zhuangzhuang LIU ; Wenjing LI ; Zhenlu XU ; Xiaoyu ZHANG ; Runlan CAI ; Yun QI
Chinese Journal of Modern Applied Pharmacy 2024;41(7):887-894
OBJECTIVE
To compare the anti-oxidative effects of "three decoctions for COVID-19" (Qingfei Paidu decoction, Huashi Baidu decoction, Xuanfei Baidu decoction) in parallel experimental models.
METHODS
In the cell-free system, the total antioxidant capacity was investigated by FRAP method. The scavenging effects of DPPH radicals and superoxide anions were evaluated by DPPH and NBT reduction method, respectively. The scavenging effect of hydroxyl radicals was determined by a fluorescence method based on the end-product MDA. The anti-lipid peroxidation activity was investigated using the FeSO4-induced rat liver homogenate MDA method. Based on these five antioxidant indicators, the antioxidant capabilities of the extracts of three decoctions were parallelly compared in the cell-free system. Furthermore, in lipopolysaccharide-activated RAW264.7 cells, the productions of intracellular and mitochondrial reactive oxygen species(ROS) were detected using the L-012 probe and the MitoSOX mitochondrial superoxide red fluorescence probe, respectively; and intracellular NADPH oxidase activity was measured using the lucigenin probe. These three indicators were used to parallelly compare the antioxidant capabilities of the extracts of three decoctions.
RESULTS
In the cell-free system, three decoctions for COVID-19 could concentration-dependently scavenge DPPH radicals, superoxide anions and hydroxyl radicals, and potently inhibit the lipid peroxidation. At the equal extract concentration, their scavenging effects on DPPH radicals and superoxide anions and the total antioxidant capacity were comparable; while Huashi Baidu decoction exhibited the strongest ability to scavenge hydroxyl radicals and inhibit lipid peroxidation. In the cell system, three decoctions could reduce lipopolysaccharide-elevated intracellular ROS level by weakening NADPH oxidase activity; meanwhile, they could decrease mitochondrial ROS productions, among which Qingfei Paidu decoction possessed the most comprehensive effection.
CONCLUSION
Collectively, three decoctions for COVID-19 exert diverse antioxidant effects in both cell-free and cell systems, and each of them possesses the distinct advantages. Given that oxidative stress is pivotal during the pathological process of COVID-19, the results may suggest that the antioxidant ability of three decoctions is one of the pharmacodynamic basis for their clinical use.


Result Analysis
Print
Save
E-mail