1.Clinical Efficacy and Mechanism of Bupi Qingfei Prescription in Treating Stable Bronchiectasis
Zi YANG ; Guangsen LI ; Bing WANG ; Bo XU ; Jianxin WANG ; Sheng CAO ; Xinyan CHEN ; Xia SHI ; Qing MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):162-169
ObjectiveTo explore the clinical efficacy and mechanism of Bupi Qingfei prescription (BPQF) in treating stable bronchiectasis in the patients with syndromes of lung-spleen Qi deficiency and phlegm-heat accumulation in the lungs. MethodsA randomized, double-blind, placebo-controlled trial was conducted. Patients were randomized into BPQF and placebo control (PC) groups. On the basis of conventional Western medicine treatment, the BPQF granules and placebo were respectively administered at 10 g each time, twice a day, for a course of 24 weeks. The TCM symptom scores, Quality of Life Questionnaire for Bronchiectasis (QOL-B) scores, lung function indicators, T lymphocyte subsets, level of inflammatory factors in the sputum, level of neutrophil elastase (NE) in the sputum, and occurrence of adverse reactions were observed before and after treatment in the two groups. ResultsA total of 64 patients completed the study, encompassing 32 in the BPQF group and 32 in the PC group. After treatment, the BPQF group showed decreased TCM symptom scores (P<0.01), increased QOL-B scores (P<0.01), and declined levels of tumor necrosis factor (TNF)-α and NE (P<0.05, P<0.01). The PC group showed decreased TCM symptom (except spleen deficiency) scores (P<0.01), increased the QOL-B health cognition and respiratory symptom domain scores (P<0.05, P<0.01), and a declined TNF-α level (P<0.01). Moreover, the BPQF group had lower TCM symptom (except chest tightness) scores (P<0.05, P<0.01), higher QOL-B (except treatment burden) scores (P<0.05, P<0.01), and lower levels of interleukin-6 and TNF-α (P<0.05) than the PC group. Neither group showed serious adverse reactions during the treatment process. ConclusionBPQF can ameliorate the clinical symptoms of stable bronchiectasis patients who have lung-spleen Qi deficiency or phlegm-heat accumulation in the lungs by regulating the immune balance and inhibiting airway inflammatory responses.
2.Pathogenic Mechanisms of Spleen Deficiency-Phlegm Dampness in Obesity and Traditional Chinese Medicine Prevention and Treatment Strategies:from the Perspective of Immune Inflammation
Yumei LI ; Peng XU ; Xiaowan WANG ; Shudong CHEN ; Le YANG ; Lihua HUANG ; Chuang LI ; Qinchi HE ; Xiangxi ZENG ; Juanjuan WANG ; Wei MAO ; Ruimin TIAN
Journal of Traditional Chinese Medicine 2026;67(1):31-37
Based on spleen deficiency-phlegm dampness as the core pathogenesis of obesity, and integrating recent advances in modern medicine regarding the key role of immune inflammation in obesity, this paper proposes a multidimensional pathogenic network of "obesity-spleen deficiency-phlegm dampness-immune imbalance". Various traditional Chinese medicine (TCM) herbs that strengthen the spleen, regulate qi, and resolve phlegm and dampness can treat obesity by improving spleen-stomach transport and transformation, promoting water-damp metabolism, and regulating immune homeostasis. This highlights immune inflammation as an important entry point to elucidate the TCM concepts of "spleen deficiency-phlegm dampness" and the therapeutic principle of "strengthening the spleen and eliminating dampness to treat obesity". By systematically analyzing the intrinsic connection between "spleen deficiency generating dampness, internal accumulation of phlegm dampness" and immune dysregulation in obesity, this paper aims to provide theoretical support for TCM treatment of obesity based on dampness.
3.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain by Regulating PD-1/PD-L1-induced Osteoclast Formation
Lu SHANG ; Juanxia REN ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):72-79
ObjectiveThis study aims to investigate the action mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) by regulating programmed death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway-induced osteoclast formation. MethodsThirty female C57BL/6 mice were randomly allocated into the following groups (n=6 per group): normal control group, model group, low‑dose XZP group (31.5 g·kg-1), high‑dose XZP group (63 g·kg-1), and PD‑1 inhibitor (Niv) group. A bone cancer pain (BCP) model was established by injecting Lewis lung carcinoma cells. Mice in the normal control and model groups received topical application of a blank paste matrix at the wound site. Mice in the low‑ and high‑dose XZP groups were treated with XZP applied topically twice daily. Mice in the Niv group were topically administered the blank paste matrix and additionally received Niv via tail‑vein injection every two days. All interventions were continued for 21 days. During this period, behavioral tests were performed to assess mechanical, motor, and thermal nociceptive sensitivities. After 21 days, all mice were euthanized, and bone tissue from the operated side was collected for sectioning and preservation. Tartrate‑resistant acid phosphatase (TRAP) staining was used to evaluate osteoclast expression in the lesioned bone tissue. Immunohistochemistry was performed to detect the expression of Runt‑related transcription factor 2 (Runx2) in the lesioned bone tissue. Immunofluorescence was employed to assess the expression of PD‑1 and PD‑L1 in the lesioned bone tissue. ResultsCompared with the normal group, the model group showed significantly decreased limb mechanical withdrawal threshold, spontaneous paw flinching, and thermal withdrawal latency (P<0.01), increased number of osteoclasts in the lesioned bone tissue (P<0.01), and reduced expression of Runx2 (P<0.01). Compared with the model group, the BCP mice in the XZP low-dose group, XZP high-dose group, and Niv group exhibited increased limb mechanical withdrawal threshold, movement scores, and thermal withdrawal latency (P<0.01). The XZP low-dose group showed no significant changes in osteoclast number or Runx2 expression, while the XZP high-dose group and Niv group demonstrated significantly reduced osteoclast numbers (P<0.01) and significantly increased Runx2 expression (P<0.01). In the lesioned bone tissue of BCP mice, the XZP low-dose group showed no significant decrease in the percentage of PD-1 expression, but a decrease in the percentage of PD-L1 expression (P<0.05). In contrast, both the XZP high-dose group and the Niv group exhibited significant reductions in the percentages of PD-1 and PD-L1 expression (P<0.01). ConclusionXZP alleviates the pain of mice with BCP by blocking the PD-1/PD-L1 pathway to inhibit osteoclastogenesis.
4.Mechanism of Xiaozheng Zhitong Paste in Alleviating Bone Cancer Pain by Regulating Microglial Pyroptosis Based on PINK1/Parkin/NLRP3 Signaling Pathway
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):80-90
ObjectiveThe paper aims to investigate the mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) through regulating the PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy-NOD-like receptor protein 3 (NLRP3) inflammasome pathway to suppress microglial pyroptosis. MethodsLipopolysaccharide (LPS) and LPS-adenosine triphosphate (ATP) were used to establish an inflammation and pyroptosis model in microglial cells. The cells were randomly divided into the following groups: control group, LPS group, LPS+low-dose XZP group, LPS+high-dose XZP group, LPS-ATP group, LPS-ATP+low-dose XZP group, LPS-ATP+high-dose XZP group, LPS-ATP+XZP group, and LPS-ATP+XZP+CsA group. Techniques including terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), Western blot, and confocal fluorescence staining were employed to assess the effects of XZP on microglial apoptosis, inflammatory cytokine release, inflammasome activation, pyroptosis, and mitophagy. ResultsIn vitro experiments showed that compared with the blank group, the LPS group exhibited significantly increased levels of microglial apoptosis and pro-inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)(P<0.01), along with significantly upregulated protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) (P<0.01). Compared with the LPS group, the high-dose LPS-XZP group significantly reduced the level of apoptosis (P<0.01) and the content of the aforementioned pro-inflammatory factors (P<0.01). Both the low- and high-dose LPS-XZP groups dose-dependently downregulated the protein expression of iNOS, COX-2, and p-NF-κB p65 (P<0.05, P<0.01). Compared with the blank group, the LPS-ATP group showed significantly upregulated expression of pyroptosis-related proteins, including Caspase-1/pro-Caspase-1, N-terminal fragment of gasdermin D (GSDMD-N)/full-length gasdermin D (GSDMD-F), NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β precursor (pro-IL-1β), and mature IL-1β (P<0.01). The levels of pyroptotic factors IL-1β and IL-18 were significantly elevated (P<0.01), and membrane pore formation and intracellular reactive oxygen species (ROS) levels were significantly increased (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently downregulated the expression of the aforementioned pyroptosis-related proteins (P<0.05, P<0.01). The low-dose LPS-ATP+XZP group reduced IL-1β levels (P<0.01), while the high-dose group reduced both IL-1β and IL-18 levels (P<0.01) Both the low- and high-dose LPS-ATP+XZP groups dose-dependently reduced membrane pore formation and intracellular ROS production (P<0.01). Compared with the blank group, the LPS-ATP group showed significantly reduced expression of mitophagy-related proteins PINK1 and Parkin, and a decreased ratio of microtubule-associated protein 1 light chain 3Ⅱ(LC3Ⅱ) to LC3Ⅰ(P<0.01), while p62 expression was significantly increased (P<0.01). Mitochondrial ROS levels were significantly enhanced (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently reversed the expression of these proteins (P<0.05, P<0.01) and reduced mitochondrial ROS levels (P<0.01). After treatment with the mitophagy inhibitor cyclosporin A (CsA), the beneficial effects of XZP on mitochondrial function and its inhibitory effects on pyroptosis-related protein expression were significantly reversed (P<0.05, P<0.01). ConclusionXZP reduces ROS levels by activating PINK1/Parkin-mediated mitophagy, thereby inhibiting NLRP3 inflammasome activation and microglial pyroptosis, which provides new molecular evidence for the mechanism by which XZP alleviates BCP.
5.Xiaozheng Zhitong Paste Relieves Bone Cancer Pain in Mice by Alleviating Activation of Microglia in Spinal Cord and Damage to Neurons via Blocking PAR2/NF-κB/NLRP3 Pathway
Guangda ZHENG ; Linghan MENG ; Lu SHANG ; Juanxia REN ; Dongtao LI ; Haixiao LIU ; Lingyun WANG ; Changlin LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):91-100
ObjectiveTo investigate the effects and underlying mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain (BCP). MethodsThirty female BALB/c mice were randomly divided into five groups: a Sham group, a BCP group, a BCP+low-dose XZP group, a BCP+high-dose XZP group, and a BCP+high-dose XZP + protease-activated receptor 2 (PAR2) agonist GB-110 group. BCP mice model was constructed by injecting Lewis lung carcinoma cells into the femoral cavity of the right leg, which was followed by being treated with XZP for 21 d. After 21 d, the mice were sacrificed. Nissl staining was used to evaluate the survival of spinal cord neurons. Immunofluorescence staining was conducted to localize ionized calcium-binding adapter molecule 1 (Iba1) and neuronal nuclear antigen (NeuN) in spinal cord tissue, thereby assessing microglial activation and neuronal survival. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in spinal cord tissue. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels associated with M1/M2 polarization of microglia. Western blot analysis was performed to examine the expression of proteins related to microglial polarization as well as those involved in the PAR2/nuclear factor kappa B (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway in the spinal cord. ResultsCompared with the Sham group, the spinal cord neurons were damaged, the number of Nissl-positive spinal cord neurons in the spinal cord tissue was significantly reduced (P<0.01), and the rate of NeuN-positive cells was significantly decreased (P<0.01). The spinal cord microglia were activated, the inflammatory level of the spinal cord tissue was enhanced, and Iba1 staining was significantly enhanced (P<0.01). The levels of IL-1β, TNF-α, IL-6, TGF-β, IL-4 and IL-10 were significantly increased (P<0.01). The mRNA expressions of IL-1β, TNF-α and inducible nitric oxide synthase (iNOS) were significantly increased (P<0.01), and the expression of PAR2, NLRP3, ASC and NF-κB p65 proteins in the spinal cord tissue of the BCP mice was significantly enhanced (P<0.01). Compared with the BCP group, high-dose XZP treatment significantly increased the number of Nissl-positive spinal cord neurons in the BCP mice (P<0.01), significantly enhanced the rate of NeuN-positive cells in the spinal cord tissue, and significantly weakened Iba1 staining (P<0.01). In addition, the levels of IL-1β, TNF-α, and IL-6 were significantly decreased, while the levels of TGF-β, IL-4, and IL-10 were significantly increased (P<0.05, P<0.01). The mRNA expression levels of IL-1β, TNF-α, and iNOS were decreased, whereas those of cluster of differentiation 206 (CD206), arginase-1 (Arg-1), and YM1/2 were significantly increased (P<0.05, P<0.01). Low-dose and high-dose XZP treatment significantly decreased the expression of PAR2, NLRP3, ASC, and NF-κB p65 proteins in the spinal cord tissue (P<0.05, P<0.01). These effects could all be significantly eliminated by the PAR2 agonist GB-110. ConclusionXZP can mitigate BCP in mice, which may be achieved through blocking the activated PAR2/NF-κB/NLRP3 pathway.
6.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain of Mice by Reducing Ferroptosis in Spinal Cord Tissue and Neuronal Damage via Regulating Nrf2/HO-1/GPX4/SLC7A11 Signaling Pathway
Juanxia REN ; Lu SHANG ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):101-113
ObjectiveThe paper aims to investigate the action mechanism by which the Xiaozheng Zhitong paste (XZP) relieves bone cancer pain (BCP). MethodsA model of mice with BCP was established by using Lewis tumor cells. The therapeutic effects of XZP, the ferroptosis inhibitor Ferrostatin-1 (Fer-1), and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor Brusatol (Bru) on BCP were examined. Mice were randomly divided into the Sham operation group, BCP group, BCP+XZP-L group, BCP+XZP-H group, BCP+Fer-1 group, and BCP+XZP-H+Bru group, with six mice in each group. Pain behavior tests were conducted on the mice to assess pain levels. Colorimetric assays were employed to measure ferroptosis-related factors in serum and spinal cord tissue including Fe, malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). Immunofluorescence staining was used to assess ROS production in spinal cord tissue. Transmission electron microscopy was used to observe the ultrastructure of mitochondria in lumbar spinal cord tissue. Quantitative real-time polymerase chain reaction (Real-time PCR) was employed to detect mRNA expression of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in spinal cord neuron tissue. The protein expression of Nrf2, HO-1, GPX4, and SLC7A11 in spinal cord neurons was measured by Western blot. ResultsCompared with the Sham group, mice in the BCP group exhibited significantly reduced limb usage scores, mechanical foot withdrawal thresholds, and thermal foot withdrawal thresholds (P<0.01). Serum and lumbar spinal cord tissue levels of Fe, MDA, and reactive oxygen species (ROS) were significantly elevated (P<0.05), while superoxide dismutase (SOD) levels were significantly decreased (P<0.05). Lumbar spinal cord mitochondrial structural damage was observed, and mRNA and protein expression of Nrf2, HO-1, GPX4, and SLC7A11 were significantly downregulated (P<0.01). Compared with the BCP group, both low- and high-dose XZP groups improved the aforementioned pain behavioral indicators (P<0.05,P<0.01), reduced ferroptosis-related biomarkers including Fe, MDA, and ROS levels (P<0.05), increased SOD levels (P<0.05,P<0.01), alleviated mitochondrial damage, and upregulated Nrf2, HO-1, GPX4, SLC7A11 mRNA and protein expression (P<0.05,P<0.01). The high-dose XZP group exhibited comparable efficacy to Fer-1 in alleviating pain and inhibiting ferroptosis. Following Bru administration, XZP's effects on pain behavioral indicators, regulation of ferroptosis-related markers, mitochondrial structural protection, and activation of the Nrf2/HO-1/GPX4/SLC7A11 pathway were significantly reversed (P<0.05,P<0.01). ConclusionExternal application of XZP alleviates pain symptoms in BCP mice by activating the Nrf2/HO-1/GPX4/SLC7A11 pathway, thereby inhibiting ferroptosis and neuronal damage in spinal cord neurons.
7.Traditional Chinese Medicine for Cancer Pain Management: A Review
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):114-123
Cancer pain is one of the most common complications in patients with malignant tumors, severely affecting their quality of life. Its pathogenesis involves complex interactions among the tumor microenvironment, peripheral sensitization, and central sensitization. The tumor microenvironment initiates peripheral pain sensitization by secreting algogenic mediators, activating ion channels and related receptor signaling pathways, driving abnormal osteoclast activation, and mediating neuro-immune crosstalk. Persistent nociceptive input further triggers increased excitability of central neurons, activation of glial cells, and neuroinflammatory cascade reactions, ultimately leading to central pain sensitization. Although traditional opioid drugs can alleviate pain to some extent, they still have many limitations, such as incomplete analgesia, drug tolerance, and adverse reactions. In recent years, traditional Chinese medicine (TCM) compounds have made continuous progress in the treatment of cancer pain. Studies have shown that they can not only effectively relieve cancer pain and reduce the dosage of opioids but also significantly improve patients' quality of life. TCM treatment of cancer pain follows the principle of syndrome differentiation and treatment. Based on this, targeted therapeutic principles have been proposed, including promoting blood circulation, removing stasis, regulating Qi, and unblocking collaterals; tonifying the kidney, replenishing essence, warming Yang, and dispersing cold, activating blood, resolving phlegm, detoxifying, and dispersing nodules, as well as strengthening the body, replenishing deficiency, and harmonizing Qi and blood. Modern research indicates that TCM compounds can exert synergistic effects through multiple pathways, inhibiting inflammatory responses, regulating nerve conduction, intervening in bone metabolism and related gene expression, thereby producing anti-inflammatory and bone-protective effects to achieve the goal of alleviating cancer pain. This article systematically elaborates on the pathogenesis of cancer pain, the clinical application of TCM in treating cancer pain, and its related mechanisms of action, aiming to provide a theoretical basis and new strategies for the integration of TCM into comprehensive cancer pain management.
8.Non-pharmacological management for post-stroke spasticity from 2004 to 2024: a bibliometric analysis
Junfeng ZHANG ; Hao CHEN ; Yuzheng DU ; Chen LI ; Tao YU ; Yuanqing YANG
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):45-58
ObjectiveTo analyze the research status and development trends of non-pharmacological therapies for post-stroke spasticity (PSS) over the past two decades. MethodsRelevant literatures on non-pharmacological rehabilitation of PSS published from January, 2004 to June, 2024 were retrieved from Web of Science Core Collection. CiteSpace 6.3.R6 and VOSviewer 1.6.18 were used for visualization analysis. ResultsA total of 780 publications were included. The annual number of publications showed an overall upward trend. China, the USA, and Italy contributed the highest number of publications. The Hong Kong Polytechnic University and researcher Noureddin Nakhostin Ansari were identified as the most influential institution and author, respectively. High-frequency keywords and cluster labels included electric stimulation, transcranial magnetic stimulation, robot and acupuncture. ConclusionOver the past 20 years, researches on non-pharmacological therapies for PSS have remained active, with hotspots focusing on diverse interventions such as electrical stimulation, magnetic stimulation and robot-assisted therapy.
9.Mechanism prediction and verification of Xihuang pill against diffuse large B-cell lymphoma
Ruyi HUANG ; Jinyu LI ; Wenqi LIN ; Xin JIANG ; Yanling CHEN ; Weikun HUANG ; Lin YANG
China Pharmacy 2026;37(2):161-167
OBJECTIVE To investigate the mechanism of Xihuang pill (XHP) against diffuse large B-cell lymphoma (DLBCL). METHODS The active ingredients of XHP and potential therapeutic targets for DLBCL were identified using TCMSP, GeneCards and DisGeNET databases. Protein-protein interaction networks were constructed using the String database and Cytoscape software to screen core components and core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were then performed. The clinical relevance of core targets was analyzed using the GEPIA and PanCanSurvPlot databases. Molecular docking and molecular dynamics (MD) simulation were conducted to verify the interactions between core components and core targets, and the binding free energy was calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The effects of XHP on DLBCL and the related molecular mechanisms were validated using CCK-8 assay, flow cytometry and Western blot. RESULTS Network pharmacology analysis identified 108 active ingredients of XHP and 410 potential therapeutic targets for DLBCL. Six core components (e.g., 17 beta-estradiol, quercetin) and ten core targets [e.g., tumor protein 53 (TP53), proto-oncogene tyrosine-protein kinase Src (SRC)] were obtained. Enrichment analysis indicated that the anti-DLBCL effects of XHP were primarily associated with the apoptotic signaling pathway, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and so on. Clinical correlation analysis revealed that TP53 and SRC expression were significantly up-regulated in DLBCL tissues and associated with poor patient prognosis (P<0.05). Molecular docking, MD simulations and MM-PBSA calculations confirmed that the SRC-quercetin complex had a mail:stronger and more stable binding affinity. In vitro experiments demonstrated that XHP concentration-dependently inhibited the proliferation of DLBCL cells; compared with control group, XHP medium- and high-dose groups could significantly induce the apoptosis of SU-DHL2 and SU-DHL4 cells, and significantly down- regulated the expressions of SRC protein, phosphorylated (p)-PI3K/PI3K and p-Akt/Akt in SU-DHL4 cells (P<0.05). CONCLUSIONS XHP may inhibit the proliferation and induce the apoptosis of DLBCL cells by regulating the SRC/PI3K/Akt signaling pathway.
10.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.

Result Analysis
Print
Save
E-mail