1.Analysis of Changes on Volatile Components of Ligusticum sinense cv. Chaxiong Rhizome Before and After Wine Processing Based on Electronic Nose and HS-GC-MS
Wen ZHANG ; Peng ZHENG ; Jiangshan ZHANG ; Xiaolin XIAO ; Zaodan WU ; Li XIN ; Wenhui GONG ; Jinlian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):173-181
ObjectiveBy comparing the composition and content of volatile components in raw products, wine-washed products and wine-fried products of Ligusticum sinense cv. Chaxiong rhizome(LSCR), to investigate the influence of wine processing on the volatile components of LSCR, in order to provide a basis for the development of quality standards for LSCR and its processed products. MethodsElectronic nose was used to identify the odors of LSCR, wine-washed and wine-fried LSCR, and their volatile components were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the relative mass fractions of these components were determined by peak area normalization method. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on the obtained sample data by SIMCA 14.1 software, and the differential components of LSCR, wine-washed and wine-fried LSCR were screened according to the variable importance in the projection(VIP) value>1. Pearson correlation analysis was used to explore the relationship between volatile differential flavor components and electronic nose sensors. ResultsElectronic nose detection results showed that there were significant differences in the odors of LSCR, wine-washed and wine-fried LSCR, mainly reflected in the sensors S2, S4, S5, S6, S11, S12, S13. And a total of 62 compounds were identified from LSCR and its wine-processed products, among which 46, 50 and 51 compounds were identified from LSCR, wine-fried and wine-washed LSCR, respectively. There were 21 differential components between the raw products and wine-fried products, of which 10 components were increased and 11 were decreased after processing. There were 20 differential components between the raw products and wine-washed products, of which 11 constituents increased and 9 decreased after processing. There were 17 differential components between the wine-wash products and wine-fried products. Compared with the wine-washed products, the contents of 13 components in the wine-fried products increased, and the contents of 4 components decreased. The increasing trend of the content of phthalides in the wine-washed products was more obvious than that in the wine-fried products, but the content of total volatile components was higher in the wine-fried products than the wine-washed products. Correlation analysis showed that there were different degrees of correlation between the 7 differential sensors of electronic nose and 24 differential volatile components, mainly phthalides and olefins. ConclusionThe odor and the content of volatile components in LSCR changed obviously after wine processing, and n-butylphthalide, Z-butylidenephthalide and E-ligustilide can be used as the candidate differential markers of volatile components in LSCR before and after wine processing.
2.Immunity-inflammation Mechanism of Viral Pneumonia and Traditional Chinese Medicine Treatment Based on Theory of Healthy Qi and Pathogenic Qi
Zheyu LUAN ; Hanxiao WANG ; Xin PENG ; Yihao ZHANG ; Yunhui LI ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):239-247
Viral pneumonia is an infectious disease caused by virus invading the lung parenchyma and interstitial tissue and causing lung inflammation, with the incidence rising year by year. Traditional Chinese medicine (TCM) can treat viral pneumonia in a multi-component, multi-target, and holistic manner by targeting the core pathogenesis of pneumonia caused by different respiratory viruses, demonstrating minimal side effects and significant advantages. According to the theory of healthy Qi and pathogenic Qi in TCM, the struggle between healthy Qi and pathogenic Qi and the imbalance between immunity and inflammation run through the entire process of viral pneumonia, and the immunity-inflammation status at different stages of the disease reflects different relationships between healthy Qi and pathogenic Qi. Immune dysfunction leads to the deficiency of healthy Qi, causing viral infections. The struggle between healthy Qi and pathogenic Qi causes immunity-inflammation imbalance, leading to the onset of viral pneumonia. Inflammatory damage causes persistent accumulation of phlegm and stasis, leading to the progression of viral pneumonia. The cytokine storm causes immunodepletion, leading to the excess of pathogenic Qi and diminution of healthy Qi and the deterioration of viral pneumonia. After the recovery from viral pneumonia, there is a long-term imbalance between immunity and micro-inflammation, which results in healthy Qi deficiency and pathogenic Qi lingering. Healthy Qi deficiency and pathogenic Qi excess act as common core causes of pneumonia caused by different respiratory viruses. Clinical treatment should emphasize both replenishing healthy Qi and eliminating pathogenic Qi, helping to restore the balance between healthy Qi and pathogenic Qi as well as between immunity and inflammation, thus promoting the recovery of patients from viral pneumonia. According to the TCM theory of healthy Qi and pathogenic Qi, this article summarizes the immunity-inflammation mechanisms at different stages of viral pneumonia, and explores the application of the method of replenishing healthy Qi and eliminating pathogenic Qi in viral pneumonia. The aim is to probe into the scientific connotation of the TCM theory of healthy Qi and pathogenic Qi in viral pneumonia and provide ideas for the clinical application of the method of replenishing healthy Qi and eliminating pathogenic Qi to assist in the treatment of viral pneumonia.
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
4.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
5.Analyzing Differences in Volatile Components of Citri Reticulatae Pericarpium Before and After Being Stir-fried with Halloysitum Rubrum Based on HS-GC-MS and Intelligent Sensory Technology
Li XIN ; Jiawen WEN ; Wenhui GONG ; Beibei ZHAO ; Shihao YAN ; Huashi CHEN ; Haiping LE ; Jinlian ZHANG ; Yanhua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):157-162
ObjectiveTo analyze the differences in color, odor and volatile components of Citri Reticulatae Pericarpium(CRP) before and after being stir-fried with Halloysitum Rubrum, and to explore the material basis of enhancing the effect of strengthening spleen after processing and the scientific connotation of decoction pieces processed with Halloysitum Rubrum as the auxiliary material. MethodsThe volatile components of the samples before and after processing were identified and relatively quantified by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the volatile components were analyzed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). According to the principle of variable importance in the projection(VIP) value>1.5, volatile differential components before and after processing were screened. And combined with intelligent sensory technologies such as colorimeter and electronic nose, the chroma and odor information of CRP before and after being stir-fried with Halloysitum Rubrum were identified. Pearson correlation analysis was used to explore the correlation between volatile differential components and chroma values. ResultsA total of 112 volatile components were identified from CRP and CRP stir-fried with Halloysitum Rubrum, of which 84 were from CRP and 97 were from CRP stir-fried with Halloysitum Rubrum. And 7 differential components were selected, including α-pinene, β-myrcene, linalool, sabinene, ocimene isomer mixture, A-ocimene, and δ-elemene. After being processed with Halloysitum Rubrum, the brightness value(L*), yellow-blue value(b*) and total chromatic value(E*ab) of CRP were decreased(P<0.01), and red-green value(a*) was increased(P<0.01), the response values of S4, S5, S10 and S13 sensors were significantly increased(P<0.05), and the response values of S3 and S8 sensors were significantly decreased(P<0.05). Correlation analysis showed that α-pinene and β-myrcene were negatively correlated with L* and E*ab, but positively correlated with a*. Sabinene was positively correlated with L* and E*ab. Linalool was positively correlated with L* and E*ab, and negatively correlated with a*. The ocimene isomer mixture was positively correlated with the L*. ConclusionAfter being processed with Halloysitum Rubrum, the appearance color, odor and volatile components of CRP change significantly, and α-pinene, β-myrcene, sabinene, linalool and A-ocimene are the characteristic volatile components before and after processing, which can provide references for the quality evaluation and clinical application of CRP and its processed products.
6.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
7.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
8.Clinical Diseases Responding Specially to TCM Treatment: Psoriasis
Liu LIU ; Xiaoying SUN ; Mei MO ; Yaqiong ZHOU ; Bin LI ; Xiaoxiao ZHANG ; Xin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):260-268
Psoriasis is a common chronic inflammatory systemic disease in dermatology. Its high prevalence, recurrence rate, and numerous comorbidities impose a significant physical and mental burden on patients. With the continuous advancement of modern medicine, the emergence of biological agents has improved clinical efficacy, making it possible to overcome psoriasis, in addition to classical treatments. However, in clinical practice, adverse reactions, drug resistance, recurrence rates, and immune drift cannot be ignored. Traditional Chinese medicine (TCM) has a history of thousands of years in treating psoriasis, demonstrating good efficacy, high safety, and a low recurrence rate, but a standardized management system is lacking. Therefore, the 25th Clinical Diseases Responding Specially to TCM Treatment Series (Psoriasis) Youth Salon, hosted by the Chinese Association of Chinese Medicine and organized by the Youth Committee of the Chinese Association of Chinese Medicine, invited 29 experts and scholars from TCM, Western medicine, and interdisciplinary fields to actively discuss the "Advantages, Challenges, and Clinical Transformation of TCM and Western Medicine in the Diagnosis and Treatment of Psoriasis". The experts at the meeting concluded that the advantages of TCM in the treatment of psoriasis are as follows. Firstly, in the TCM-led treatment plan, TCM's understanding of psoriasis follows the principle of combining the differentiation of disease and syndrome. This approach distinguishes the basic contradiction from the current main contradiction and enables a clear grasp of the dynamic process of psoriasis development. Based on the system of syndrome differentiation and treatment, TCM intervention is applied to address the current main contradiction, and the optimal TCM treatment plan is formulated by combining internal and external treatments. Adhering to the principle of "what is visible outside must be addressed inside", TCM can prevent and treat psoriasis comorbidities early by differentiating syndrome types. Secondly, in the integrated TCM and Western medicine treatment plan, the combination of both methods not only enhances efficacy but also reduces the adverse reactions of immunosuppressants and biological agents, lowering the recurrence rate. This conference provides a reference for the diagnosis and treatment of psoriasis using TCM and integrated TCM and Western medicine, opening up new ideas for clinical and basic research and guiding future research directions.
9.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.
10.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.

Result Analysis
Print
Save
E-mail