1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Effect and mechanism of compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis in T2DM insulin resistance rats
Shuang WEI ; Feng HAO ; Wenchun ZHANG ; Zhangyang ZHAO ; Ji LI ; Dongwei HAN ; Huan XING
China Pharmacy 2025;36(1):57-63
OBJECTIVE To explore the effect and potential mechanism of the compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis of liver cells in type 2 diabetes mellitus (T2DM) insulin resistance (IR) rats. METHODS Sixty male SD rats were randomly divided into control group (12 rats) and modeling group (48 rats). The modeling group was fed with a high- fat diet for 4 consecutive weeks and then given a one-time tail vein injection of 1% streptozotocin to establish T2DM IR model. The model rats were randomly divided into model group, the compatibility of Astragali Radix-Puerariae Lobatae Radix group [QG group, 4.05 g/(kg·d), intragastric administration], ferroptosis inhibitor ferrostatin-1 group [Fer-1 group, 5 mg/kg by intraperitoneal injection, once every other day], the compatibility of Astragali Radix-Puerariae Lobatae Radix+ferroptosis inducer erastin group [QG+erastin group, 4.05 g/(kg·d) by intragastric administration+erastin 10 mg/(kg·d), intraperitoneal injection]. After 4 weeks of intervention, serum fasting blood glucose (FBG) and fasting insulin (FINS) were measured in each group of rats, and homeostasis model assessment of insulin resistance (HOMA-IR) and the natural logarithm of insulin action index(IAI) were calculated; the serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate transaminase (AST) and alanine transaminase (ALT), Fe2+ and Fe content, glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels, NADP+/NADPH ratio and reactive oxygen species (ROS) were determined. The pathological morphology of its liver tissue was observed; the protein expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), long-chain acyl-CoA synthetase 3 (ACSL3), ACSL4, ferritin mitochondrial (FTMT), and cystine/glutamate anti-porter (xCT) in the liver tissue of rats were detected. RESULTS Compared with control group, the liver cells in the model group of rats showed disordered arrangement, swelling, deepened nuclear staining, and more infiltration of inflammatory cells, as well as a large number of hepatocyte vacuoles and steatosis; FBG (after medication), the levels of TC, TG, LDL-C, AST, ALT, FINS, MDA and ROS, HOMA-IR, Fe2+ and Fe content, NADP+/NADPH ratio and protein expression of ACSL4 were significantly increased or up-regulated, while the levels of HDL-C, GSH and SOD, IAI, protein expressions of GPX4, FTH1, ACSL3, FTMT and xCT were significantly reduced or down-regulated (P<0.01). Compared with the model group, both QG group and Fer-1 group showed varying degrees of improvement in pathological damage of liver tissue and the levels of the above indicators, the differences in the changes of most indicators were statistically significant (P<0.01 or P<0.05). Compared with QG group, the improvement of the above indexes of QG+erastin group had been reversed significantly (P<0.01). CONCLUSIONS The compatibility decoction of Astragali Radix-Puerariae Lobatae Radix can reduce the level of FBG in T2DM IR rats, and alleviate IR degree, ion overload and pathological damage of liver tissue. The above effects are related to the inhibition of ferroptosis.
3.A network meta-analysis on therapeutic effect of different types of exercise on knee osteoarthritis patients
Jia LI ; Qianru LIU ; Mengnan XING ; Bo CHEN ; Wei JIAO ; Zhaoxiang MENG
Chinese Journal of Tissue Engineering Research 2025;29(3):608-616
OBJECTIVE:The main clinical manifestations of knee osteoarthritis are pain,swelling,stiffness,and limited activity,which have a serious impact on the life of patients.Exercise therapy can effectively improve the related symptoms of patients with knee osteoarthritis.This paper uses the method of network meta-analysis to compare the efficacy of different exercise types in the treatment of knee osteoarthritis. METHODS:CNKI,WanFang,PubMed,Embase,Cochrane Library,Web of Science,Scopus,Ebsco,SinoMed,and UpToDate were searched with Chinese search terms"knee osteoarthritis,exercise therapy"and English search terms"knee osteoarthritis,exercise".Randomized controlled trials on the application of different exercise types in patients with knee osteoarthritis from October 2013 to October 2023 were collected.The outcome measures included visual analog scale,Western Ontario and McMaster Universities Osteoarthritis Index score,Timed Up and Go test,and 36-item short form health survey.Literature quality analysis was performed using the Cochrane Manual recommended tool for risk assessment of bias in randomized controlled trials.Two researchers independently completed the data collection,collation,extraction and analysis.RevMan 5.4 and Stata 18.0 software were used to analyze and plot the obtained data. RESULTS:A total of 29 articles with acceptable quality were included,involving 1 633 patients with knee osteoarthritis.The studies involved four types of exercise:aerobic training,strength training,flexibility/skill training,and mindfulness relaxation training.(1)The results of network meta-analysis showed that compared with routine care/health education,aerobic training could significantly improve pain symptoms(SMD=-3.26,95%CI:-6.33 to-0.19,P<0.05);strength training(SMD=-0.79,95%CI:-1.34 to-0.23,P<0.05)and mindfulness relaxation training(SMD=-0.79,95%CI:-1.23 to-0.34,P<0.05)could significantly improve the function of patients.Aerobic training(SMD=-1.37,95%CI:-2.24 to-0.51,P<0.05)and mindfulness relaxation training(SMD=-0.41,95%CI:-0.80 to-0.02,P<0.05)could significantly improve the functional mobility of patients.Mindfulness relaxation training(SMD=0.70,95%CI:0.21-1.18,P<0.05)and strength training(SMD=0.42,95%CI:0.03-0.81,P<0.05)could significantly improve the quality of life of patients.(2)The cumulative probability ranking results were as follows:pain:aerobic training(86.6%)>flexibility/skill training(60.1%)>strength training(56.8%)>mindfulness relaxation training(34.7%)>routine care/health education(11.7%);Knee function:strength training(73.7%)>mindfulness relaxation training(73.1%)>flexibility/skill training(56.1%)>aerobic training(39.9%)>usual care/health education(7.6%);Functional mobility:aerobic training(94.7%)>mindfulness relaxation training(65.5%)>strength training(45.1%)>flexibility/skill training(41.6%)>routine care/health education(3.2%);Quality of life:mindfulness relaxation training(91.3%)>strength training(68.0%)>flexibility/skill training(44.3%)>aerobic training(34.0%)>usual care/health education(12.3%). CONCLUSION:(1)Exercise therapy is effective in the treatment of knee osteoarthritis,among which aerobic training has the best effect on relieving pain and improving functional mobility.Strength training and mindfulness relaxation training has the best effect on improving patients'function.Mindfulness relaxation training has the best effect on improving the quality of life of patients.(2)Limited by the quality and quantity of the included literature,more high-quality studies are needed to verify it.
4.Impacts of ambient air pollutants on childhood asthma from 2019 to 2023: An analysis based on asthma outpatient visits of Nanjing Children's Hospital
Li WEI ; Xing GONG ; Lilin XIONG ; Yi ZHANG ; Fengxia SUN ; Wei PAN ; Changdi XU
Journal of Environmental and Occupational Medicine 2025;42(4):408-414
Background Asthma poses a serious threat to children's growth, development, and mental health, thus there has been an increasing focus on the control of asthma morbidity in children and the assessment of its risk factors. A growing body of research has found that exposure to ambient air pollutants an significatly increase the risk of childhood asthma. Objective To understand the changes of ambient air pollutant concentrations in Nanjing and asthma outpatient visits to Nanjing Children's Hospital, and to quantitatively analyze the effects of exposure to different ambient air pollutants on children's asthma outpatient visits. Methods Daily data of ambient air pollutants fine particulate matter (PM2.5), inhalable particle (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), meteorological factors (air temperature & relative humidity), and outpatient visits due to asthma in the hospital from January 1, 2019 to December 31, 2023 were collected, and a generalized additive model based on quasi poisson distributions was used to quantitatively analyze the short-term effects of ambient air pollutant exposure on outpatient visits due to asthma in the hospital. Results The annual average concentrations of PM2.5, PM10, SO2, and NO2 in Nanjing from 2019 to 2023 did not exceed the national limits. For single-day lagged effects, the single-pollutant model showed that the effects of PM2.5, PM10, NO2, and CO on children's asthma outpatient visits were greatest for every 10 units increase at lag0, with excess risk (ER) of 1.39% (95%CI: 0.65%, 2.14%), 1.46% (95%CI: 0.97%, 1.95%), 5.46% (95%CI: 4.36%, 6.57%), and 0.18% (95%CI: 0.11%, 0.26%), respectively, and SO2 reached the maximum effect at lag1, with an ER of 23.15% (95%CI: 13.57%, 33.53%) for each 10 units increase in concentration. Different pollutants reached their maximum cumulative lag effects at different time. The PM10, PM2.5, SO2, NO2, and CO showed the largest cumulative lag effects at lag01, lag01, lag02, lag02, and lag03, respectively, with ERs of 1.35% (95%CI: 0.77%, 1.92%), 0.96% (95%CI: 0.10%, 1.83%), 28.50% (95%CI: 15.49%, 42.98%), 6.92% (95%CI: 5.53%, 8.33%), and 0.31% (95%CI: 0.20%, 0.42%), respectively. The influences of PM2.5 and PM10 on outpatient visits due to asthma in the hospital became more pronounced with advancing age, while the associations with NO₂, SO₂, and CO were weakened as children grew older. Conclusion Ambient air pollutants (PM2.5, PM10, SO2, NO2, CO) can increase childhood asthma visits, and different pollutants have varied effects on the number of asthmatic children's visits at different ages.
5.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
6.Rapid health technology assessment of inclisiran in the treatment of atherosclerotic cardiovascular disease with hypercholesterolemia
Xing GAO ; Tianya LIU ; Qian ZHANG ; Bo ZHANG ; Wei LI ; Ling LIU
China Pharmacy 2025;36(19):2460-2465
OBJECTIVE To evaluate the efficacy, safety and economy of inclisiran in the treatment of atherosclerotic cardiovascular disease with hypercholesterolemia. METHODS A rapid health technology assessment (HTA) approach was employed. HTA reports, systematic reviews(SR)/meta-analyses, and pharmacoeconomic studies related to inclisiran were systematically identified through comprehensive searches of Chinese and English databases, including PubMed, Embase, the Cochrane Library, CNKI and Wanfang database, supplemented by HTA institutional repositories. The search timeframe spanned from database inception to April 2025. The results of the studies were descriptively analysed and summarized through literature screening, data extraction and literature quality assessment. RESULTS The final analysis included 22 studies, comprising one HTA report, 15 SR/meta-analyses, and 6 pharmacoeconomic evaluations. Regarding therapeutic efficacy, compared with control group, inclisiran could significantly reduce the levels of low-density lipoprotein cholesterol, proprotein convertase subtilisin/kexin type 9, total cholesterol, triacylglycerol, apolipoprotein B, and lipoprotein(a), increase the level of high-density lipoprotein cholesterol, and reduce the risk of adverse cardiovascular events. In terms of safety, the inclisiran group showed no significant difference compared with the control group in the risk of total adverse events, serious adverse events, or non-serious adverse events; however, an increased incidence of injection site reactions was observed, most of which were mild. In terms of cost-effectiveness, there were discrepancies in research conclusions both domestically and internationally. More studies indicated that inclisiran did not demonstrate cost-effectiveness advantage and would require an appropriate price reduction to meet cost-effectiveness criteria. CONCLUSIONS Inclisiran demonstrates favorable efficacy and acceptable safety in treating atherosclerotic cardiovascular disease with hypercholesterolemia, though its economic profile requires improvement.
9.Diagnosis and treatment pathway of neoadjuvant immunotherapy for esophageal cancer in Henan province
Li WEI ; Wenqun XING ; Yang YANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(02):186-195
Esophageal cancer is a highly prevalent tumor species in Henan province, which brings heavy medical burden to families and society. Surgical treatment plays a dominant role in the treatment of non-advanced esophageal cancer. However, cancer cells in esophageal cancer lesions are highly invasive, postoperative recurrence and metastasis rates are pretty high. More effective systemic and comprehensive treatment is urgently needed to improve the prognosis. We invited 52 doctors in esophageal surgery, oncology, pathology, imaging, and radiation therapy of 32 hospitals at all levels in Henan province, to repeatedly negotiate and fully discuss in combination with evidence and clinical practice experience. Finally, “diagnosis and treatment pathway of neoadjuvant immunotherapy for esophageal cancer in Henan province” was formulated. In this treatment pathway, seven recommendations were proposed from seven perspectives including target population, patient evaluation, protocol selection, surgical timing, postoperative management, organ preservation, and general principles to offer reference for medical personnel related to esophageal cancer surgery.
10.Construction of nursing quality evaluation index system for pediatric orthopedics
Nan WANG ; Wei JIN ; Yanzhen HU ; Jie HUANG ; Dan ZHAO ; Juan XING ; Changhong LI ; Yanan HU ; Yi LIU ; Xuemei LU ; Zheng YANG
Chinese Journal of Practical Nursing 2024;40(9):655-664
Objective:To construct a representative index system for evaluating pediatric orthopedic nursing quality, providing a basis for hospital pediatric orthopedic nursing quality assessment and monitoring.Methods:From April to July 2023, using the "structure-process-outcome" three-dimensional quality structure model as the theoretical framework, a literature review was conducted, and an item pool was formulated. Through two rounds of Delphi method expert consultations, the hierarchical analysis method was finally employed to determine the indicators and their weights at each level.Results:The effective recovery rates of the questionnaire of the two rounds of expert consultations were 100% (20/20), the authority coefficients of experts were 0.87 and 0.88, the coefficients of variation were 0.00 to 0.27 and 0.00 to 0.24. The Kendell harmony coefficients of the second and third indicators in the two rounds of inquiry were 0.140, 0.166 and 0.192, 0.161(all P<0.05). The final pediatric orthopedic nursing quality evaluation index system included 3 primary indicators, 21 secondary indicators and 83 tertiary indicators. Among the primary indicators, the weight of process quality was the highest at 0.493 4, followed by outcome quality at 0.310 8, and the lowest was structural quality at 0.195 8. In the secondary indicators, "assessment criteria of limb blood circulation" had the highest weight at 0.099 8. Conclusions:The constructed pediatric orthopedic nursing quality evaluation index system covers key aspects and is more operationally feasible. It provides better guidance for nursing interventions and quality control.

Result Analysis
Print
Save
E-mail