1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
4.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
5.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
6.Comparison of bilateral implantation of extended depth-of-focus intraocular lens and mix-and-match implantation of extended depth-of-focus intraocular lens with a diffractive bifocal intraocular lens
Tong LI ; Zhuoya LI ; Rong GUO ; Xiaomin HU ; Hui ZHANG
International Eye Science 2025;25(3):337-343
AIM: To compare the clinical outcomes of extended depth-of-focus intraocular lenses(EDOF IOLs)using either micromonovision implantation or mixed implantation of EDOF and diffractive bifocal IOLs.METHODS: This retrospective clinical trial included 130 patients(260 eyes), who were divided into two groups. Group RR comprised 70 patients(140 eyes)bilaterally implanted with ZXR00 IOLs(Tecnis ZXR00, where one target was -0.5 D to -0.75 D and the other was 0 to -0.25 D). Group RM comprised 60 patients(120 eyes)unilaterally implanted with both ZXR00 and ZMB00 IOLs(Tecnis ZMB00, 0 to -0.25 D). Postoperative outcomes were compared after 3 mo, including visual acuity, defocus curves, stereoacuity, modulation transfer functions(MTFs), higher-order aberrations, and Visual Function-14(VF-14)questionnaire responses.RESULTS: Group RR had superior bilateral intermediate vision, while the group RM had superior bilateral near vision(both P<0.05). Group RM also exhibited superior MTFs and reduced higher-order aberrations(both P<0.05). Stereoacuity and VF-14 questionnaire results showed no statistically significant difference between groups(P>0.05).CONCLUSION: The implantation of micromonovision has significantly improved near vision. IOLs and their collocation can be customized according to individual patient needs to achieve precise treatment and provide cataract patients with high-quality vision.
7.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
8.Collection, storage and utilization of lung transplant tissue samples
Yixing LI ; Xue SHI ; Hongyi WANG ; Runyi TAO ; Ye SUN ; Ailing SU ; Liyan TONG ; Jinteng FENG ; Yanpeng ZHANG ; Shuo LI ; Yawen WANG ; Guangjian ZHANG
Organ Transplantation 2025;16(1):147-155
After continuous development and improvement, lung transplantation has become the preferred means to treat a variety of benign end-stage lung diseases. However, the field of lung transplantation still faces many challenges, including shortage of donor resources, preservation and maintenance of donor lungs, and postoperative complications. Lung tissue samples removed after lung transplantation are excellent clinical resources for the study of benign end-stage lung disease and perioperative complications of lung transplantation. However, at present, the collection, storage and utilization of tissue samples after lung transplantation are limited to a single study, and unified technical specifications have not been formed. Based on the construction plan of the biobank for lung transplantation in the First Affiliated Hospital of Xi'an Jiaotong University, this study reviewed the practical experience in the collection, storage and utilization of lung transplant tissue samples in the aspects of ethical review, staffing, collection process, storage method, quality control and efficient utilization, in order to provide references for lung transplant related research.
9.Analysis of pediatric pre-prescription review orders based on PCNE classification system
Anle SHEN ; Peiqi WANG ; Tao XU ; Jia LUO ; Xuexian WANG ; Shunguo ZHANG ; Zhiling LI
China Pharmacy 2025;36(3):351-355
OBJECTIVE To provide reference for improving the pre-prescription review system and reducing the occurrence of medication error by analyzing the drug-related problems (DRPs) in the pre-prescription review orders of pediatric outpatient clinics using the Pharmaceutical Care Network Europe (PCNE) classification system. METHODS The data of pre-prescription review orders were retrospectively collected from outpatient department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine from July 2022 to June 2023; DRPs in the pre-prescription review orders were classified and summarized by using the PCNE classification system (version 9.1), and then analyzed in terms of types and causes of issues, and the acceptance of interventions. RESULTS A total of 66 017 DRPs orders were included, involving 41 165 patients. The proportion of DRPs orders in children aged ≤5 years old was the highest (58.25%), followed by children aged 6-12 years old (33.52%); the department with the highest proportion of DRPs was internal medicine of pediatrics department (71.41%); the department with the highest incidence of DRPs was thoracic surgery department (9.73%); top three drug categories of DRPs orders were systemic anti- infective drugs (25.26%), Chinese patent medicines (24.74%) and respiratory drugs (22.38%). Referring to PCNE classification system, the types of DRPs mainly focused on treatment safety (64.86%); the reasons of DRPs orders mainly focused on dose selection (82.09%), of which 41.26% were due to excessive drug dosage; 92.13% of interventions could be accepted and fully executed by doctors. CONCLUSIONS DRPs orders identified by the pre-prescription review system can be effectively analyzed by using PCNE classification system. Pharmacists should focus on medication use in children aged ≤5 years old, update and develop personalized prescription review rules timely, and meet the rational needs of clinical medication for children.
10.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.


Result Analysis
Print
Save
E-mail