1.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
2.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
3.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.
4.Determination and Mechanism Prediction of Potential Active Ingredients in Erdongtang Based on UHPLC-QqQ-MS and Network Pharmacology
Xueyuan WANG ; Baoxin LI ; Shougang SHI ; Zhengjun HUANG ; Yuntao DAI ; Xuemei QIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):28-34
ObjectiveTo establish an ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry(UHPLC-QqQ-MS) for determination of the active ingredients in Erdongtang, and to predict the targets and pathways of anti-insulin resistance action of this formula. MethodThe analysis was performed on an ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-3 min, 90%-87%A; 3-6 min, 87%-86%A; 6-9 min, 86%-83%A; 9-11 min, 83%-75%A; 11-18 min, 75%-70%A; 18-19 min, 70%-52%A; 19-22 min, 52%A; 22-25 min, 52%-5%A; 25-27 min, 5%-90%A; 27-30 min, 90%A). The contents of active ingredients in Erdongtang was detected by electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode under positive and negative ion modes. On this basis, network pharmacology was applied to predict the targets and pathways of Erdongtang exerting anti-insulin resistance effect. ResultThe 20 active ingredients in Erdongtang showed good linear relationships within a certain mass concentration range, and the precision, stability, repeatability and recovery rate were good. The results of determination showed that the ingredients with high content in 15 batches of samples were baicalein(1 259.39-1 635.78 mg·L-1), baicalin(1 078.37-1 411.52 mg·L-1), the ingredients with medium content were mangiferin(148.59-217.04 mg·L-1), timosaponin BⅡ(245.10-604.89 mg·L-1), quercetin-3-O-glucuronide(89.30-423.26 mg·L-1), rutin(46.91-1 553.61 mg·L-1), glycyrrhizic acid(55.97-391.47 mg·L-1), neomangiferin(37.45-127.03 mg·L-1), nuciferine(0.89-63.48 mg·L-1), hyperoside(6.96-136.78 mg·L-1), liquiritin(30.89-122.78 mg·L-1), liquiritigenin(26.64-110.67 mg·L-1), protodioscin(58.57-284.26 mg·L-1), the ingredients with low content were wogonin(7.16-20.74 mg·L-1), pseudoprotodioscin(5.49-22.96 mg·L-1), ginsenoside Rb1(7.31-23.87 mg·L-1), ginsenoside Rg1(10.78-28.33 mg·L-1), ginsenoside Re(7.78-24.76 mg·L-1), ophiopogonin D(2.08-4.29 mg·L-1), methylophiopogonanone A(0.74-1.67 mg·L-1). The results of network pharmacology indicated that the mechanism of anti-insulin resistance exerted by Erdongtang might be related to the phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway. ConclusionThe established UHPLC-QqQ-MS has the advantages of simple sample processing, strong exclusivity and high sensitivity, and can simultaneously determine the contents of the main ingredients from seven herbs in Erdongtang, which can lay the foundation for the development of Erdongtang compound preparations. The results of the network pharmacology can provide a reference for the mechanism study of Erdongtang in the treatment of type 2 diabetes mellitus.
5.The cytochrome P4501A1 (CYP1A1) inhibitor bergamottin enhances host tolerance to multidrug-resistant Vibrio vulnificus infection
Ruo-Bai QIAO ; Wei-Hong DAI ; Wei LI ; Xue YANG ; Dong-Mei HE ; Rui GAO ; Yin-Qin CUI ; Ri-Xing WANG ; Xiao-Yuan MA ; Fang-Jie WANG ; Hua-Ping LIANG
Chinese Journal of Traumatology 2024;27(5):295-304
Purpose::Vibrio vulnificus ( V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. Methods::An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. Results::In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival ( p = 0.014), reduced the serum creatinine ( p = 0.002), urea nitrogen ( p = 0.030), aspartate aminotransferase ( p = 0.029), and alanine aminotransferase ( p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1β: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid ( p = 0.225), liver ( p = 0.186), or kidney ( p = 0.637). Conclusion::Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.
6.Acoustic Analysis of Speech Prosody in Patients after Stroke
Yiwen ZHANG ; Qin WAN ; Yuan DAI ; Ying CHEN ; Yun LI
Journal of Audiology and Speech Pathology 2024;32(6):507-511
Objective To investigate the acoustic characteristics of speech prosody in patients after stroke and to select sensitive acoustic parameters of speech prosody.Methods A total of 30 patients after stroke(stroke group)and 30 healthy adults of similar age(control group)were collected.Both groups read short texts aloud,and each syllable and pause of all short sentences in the whole text were recorded under the spectrogram.Acoustic analysis was performed on the inter-rogative sentence"What do you want to buy for your grandson's birthday?"and the stressed sentence"I want to buy toys!"The rhythm(unnatural pause number,speech rate,articulation rate),intonation(whole sentence fundamental frequency,fundamental frequency standard deviation and fundamental frequency slope of interrogative sentences,boundary tone funda-mental frequency and fundamental frequency slope of interrogative sentences,fundamental frequency and fundamental fre-quency slope of four tones),and stress(average intensity of stressed syllables,peak intensity,and stressed syllables dura-tion)of speech prosody were analyzed and compared between the two groups.Results The unnatural pause number and the stressed syllables duration in the stroke group were significantly higher than those in the normal control group(P<0.01).The speech rate,articulation rate,whole sentence fundamental frequency standard deviation,whole sentence funda-mental frequency slope,and fourth tone fundamental frequency slope in the stroke group were significantly lower than those in the normal control group(P<0.01).The boundary tone fundamental frequency slope of interrogative sentences and the third tone fundamental frequency slope were significantly lower than those in the normal control group(P<0.05).Conclu-sion Patients after stroke have poor rhythm control,manifested as excessive pauses and slow speech rate;insufficient into-nation expression,manifested as insufficient interrogative sentence tone,and poor control ability of the third and fourth tones;compensatory expression of stress,characterized by prolonging the expression time of stressed syllables.
7.Single-center study of COVID-19 in patients with chronic lymphocytic leukemia
Xiao LU ; Ling GAO ; Siqi QIAN ; Luomengjia DAI ; Ziyuan ZHOU ; Tonglu QIU ; Yi XIA ; Yi MIAO ; Shuchao QIN ; Lei FAN ; Wei XU ; Jianyong LI ; Huayuan ZHU
Chinese Journal of Hematology 2024;45(10):923-930
Objective:To investigate the vaccination status, characteristics and prognosis of patients suffering from a combination of COVID-19 and chronic lymphocytic anemia (CLL) in China.Methods:Clinical data of 328 patients with chronic lymphocytic leukemia (CLL) who were first diagnosed with COVID-19 and treated in the Department of Hematology of Jiangsu Provincial People’s Hospital between November 2022 and February 2023 were retrospectively analyzed. Univariate and multivariate analysis of data of patients with severe/critical COVID-19 were conducted by applying the binary logistic regression model.Results:The median age of the CLL patients was 60 (24-87) years. 23.5% (77/328) of these patients suffered from severe/critical COVID-19 infection. Univariate analysis of the data demonstrated that a combination of factors including age >67 years ( OR=2.15, 95% CI 1.24- 3.73, P=0.006), diabetes ( OR=2.09, 95% CI 1.05-4.20, P=0.037), chronic hepatitis B ( OR=2.91, 95% CI 1.30-6.51, P=0.010), CLL progressive ( OR=3.79, 95% CI 1.57-9.15, P=0.003) and CD20 antibody-based treatments within three months prior to the COVID-19 infection ( OR=2.79, 95% CI 1.35-5.77, P=0.006) were the risk factors for severe/critical COVID-19. According to the multivariate analysis, CLL progressive ( OR=2.98, 95% CI 1.10-8.10, P=0.033) was an independent risk factor for severe/critical COVID-19 and administration of the BTK (Bruton tyrosine kinase) inhibitor monotherapy might exert a protective effect and influence a positive outcome of the COVID-19 infection ( OR=0.38, 95% CI 0.16-0.90, P=0.028). Among the 242 patients who were followed up until October 2023, 9.1% (22/242) had multiple subsequent COVID-19 infections (≥3), and 2.1% (5/242) had persistent COVID-19 infections (patients with persistent positive test for the SARS-CoV-2 antigen testing until missing follow-up for any reason). The peak value of the anti-SARS-CoV-2-IgG titres was observed between three and four months post symptom onset (median: 3.511 S/CO vs 1.047 S/CO, P<0.05). The levels of immunoglobulin A gradually decreased following infection with COVID-19, and its trough levels were attained between two to four weeks post infection (median: 0.30 g/L vs 0.74 g/L, P<0.05). According to this study the mortality of patients suffering from a combination of COVID-19 infection and CLL was 2.7% (9/328), and the main reason for their death was respiratory failure and heart failure. Conclusions:A low rate of COVID-19 vaccination and a high rate of severe/critical COVID-19 infection was observed in the CLL patients. CLL progressive was associated with severe/critical COVID-19. Anti-CD20-based treatments received within the past three months might be a risk factor for exacerbation of COVID-19 infection, whereas a monotherapy with BTK inhibitors exert a protective effect and improve outcome of COVID-19 infection.
8.Effect of parent-child alienation on epression among surface ship officers and soldiers:mediating role of resilience
Chong WEN ; Xiaoxiao SUN ; Beijing CHEN ; Wenjun XIANG ; Chenxuan JIN ; Jieying TAN ; Li MEI ; Fei XIE ; Qin DAI
Journal of Army Medical University 2024;46(14):1626-1632
Objective To investigate the effect of parent-child alienation on depression in surface ship officers and soldiers based on the theory of"diathesis-stress",and the mediating role of resilience between parent-child alienation and depression in them.Methods A cross-sectional study was conducted on 599 officers and soldiers from a surface ship unit.The participants were surveyed with inventory of alienation toward parents,connor-davidson resilience scale and patient health questionnaire-9 to obtain and analyze their demographic-military characteristics of their depression scores.The participants with depression scores ≥5 were recruited as the subjects,and Spearman correlation analysis was used to explore the correlation among parent-child alienation,resilience and depression.On the basis of hierarchical regression analysis,AMOS software was used to establish a structural equation modelling of intermediary effects.Results The depression score was 1(0,4)in the participants,and the depression scores of those with service length ≥11 years were comparatively higher than those with shorter length.Our results indicated that parent-child alienation was positive correlated with depression(r=0.451,P<0.001),while resilience was negatively correlated with depression and parent-child alienation(r=-0.412,-0.407,P<0.001).Regression analysis revealed that parent-child alienation had a direct positive predictive value for depression(β=0.574,P<0.001),and resilience showed a negative predictive value for depression(β=-0.211,P<0.01).Model analysis displayed that resilience had a significant mediating role in the effect of parent-child alienation on depression among these surface ship officers and soldiers,with an effect value of 0.088,and accounting for 15.86%of the total effect.Conclusion Parent-child alienation has a significant influence on depression among surface ship officers and soldiers,with resilience playing a partial mediating role.
9.Relationship between stress and insomnia in plateau soldiers:mediating role of parent-child alienation and moderating role of expressive suppression
Qiaoning ZHOU ; Zongpei DAI ; Jieying TAN ; Li HOU ; Qin DAI
Journal of Army Medical University 2024;46(14):1633-1639
Objective To investigate the influence of stress on insomnia among plateau soldiers,and explore the mediating role of parent-child alienation and the moderating role of emotion regulation strategies in this relationship.Methods A cross-sectional study design was adopted in this study.Our Self-designed General Information Questionnaire,Plateau Soldiers Stressor Scale,Insomnia Severity Index,Inventory of Alienation towards Parents,and Emotion Regulation Scale were employed to survey 2 065 plateau soldiers at an average altitude of 4 200 m.With aid of SPSS 26.0 statistics,descriptive analysis,correlation analysis and regression analysis were applied to analyze stress status,parent-child alienation,insomnia and emotion regulation in the participants,and then a structural equation model was established.Results ① The scores of stress,parent-child alienation and insomnia were significantly higher in the participants who were older,well educated(P<0.01)and were or had been in a marital relationship(married,divorced,or widowed)(P<0.001)than those without above conditions.② Significant pairwise positive correlations were observed among stress,parent-child alienation,insomnia,cognitive reappraisal,and expressive suppression(r=0.08~0.61,P<0.001).③ Stress and expressive suppression could positively predict parent-child alienation(β=0.14~0.43,P<0.001),and stress,parent-child alienation and expressive suppression could positively predict insomnia(β=0.04~0.25,P<0.01).Cognitive reappraisal could not significantly predict parent-child alienation or insomnia.④ Parent-child alienation towards parents partially mediated the relationship between stress and insomnia,with a mediation effect accounting for 7.29%of the total effect.⑤ Expressive suppression moderated the impact of stress on insomnia(β=-0.01,P<0.001),and the higher expressive suppression level mitigated the adverse effect of stress on insomnia when compared with the lower expressive suppression level.Conclusion For plateau soldiers,stress significantly predicts insomnia,with parent-child alienation playing a mediating role.Furthermore,a higher level of expressive suppression can effectively buffer the influence of stress on insomnia.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail