1.Analysis of factors influencing macular edema in patients with diabetes cataract after surgery
Ming LI ; Fang XU ; Zhijuan XU
International Eye Science 2025;25(1):140-143
AIM: To explore the risk factors of macular edema in patients with diabetes cataract after surgery, and provide reference for postoperative prevention and treatment.METHODS: A total of 55 diabetes cataract patients(55 eyes)with macular edema after phacoemulsification surgery at the ophthalmology department of Jiaozhou Central Hospital of Qingdao from January 2022 to January 2024 were selected as edema group. In addition, 59 patients(59 eyes)with diabetes cataract who received the same surgical treatment but did not develop macular edema were treated as control group, and the relationship between interferon-induced protein-10(IP-10), macrophage chemotactic protein-1(MCP-1), vascular endothelial growth factor(VEGF)and postoperative macular edema was analyzed.RESULTS:Age, diabetes course, best corrected visual acuity(BCVA), glycated hemoglobin(HbA1c), creatinine, levels of IP-10, MCP-1 and VEGF in aqueous humor in the edema group were higher than those in the control group(all P<0.05). The risk factors for postoperative macular edema in patients with diabetes cataract were prolonged duration of diabetes, BCVA, increased HbA1c, increased creatinine and IP-10 in aqueous fluid, increased MCP-1 and increased VEGF(all P<0.05).CONCLUSION:Macular edema after surgical treatment in diabetes cataract patients is associated with prolonged duration of diabetes, BCVA, HbA1c, creatinine, IP-10, MCP-1, and VEGF, and clinical interventions should be given in advance.
2.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
3.Preliminary application of sacral neuromodulation in patients with benign prostatic hyperplasia complicated with underactive bladder after transurethral resection of the prostate
Ning LIU ; Yan ZHANG ; Tao LI ; Qiang HU ; Kai LU ; Lei ZHANG ; Jianping WU ; Shuqiu CHEN ; Bin XU ; Ming CHEN
Journal of Modern Urology 2025;30(1):39-42
[Objective] To evaluate the efficacy and safety of sacral neuromodulation (SNM) in the treatment of patients with benign prostatic hyperplasia (BPH) complicated with underactive bladder (UAB) who respond poorly to transurethral resection of the prostate (TURP). [Methods] A retrospective analysis was performed on 10 patients with BPH and UAB treated with TURP by the same surgeon in Zhongda Hospital Southeast University during Jan.2018 and Jan.2023.The residual urine volume was not significantly relieved after operation, and the maximum urine flow rate and urine volume per discharge were not significantly improved.All patients underwent phase I SNM, and urinary diaries were recorded before and after surgery to observe the average daily frequency of urination, volume per urination, maximum urine flow rate, and residual urine volume. [Results] The operation time was (97.6±11.2) min.During the postoperative test of 2-4 weeks, if the residual urine volume reduction by more than 50% was deemed as effective, SNM was effective in 6 patients (60.0%). Compared with preoperative results, the daily frequency of urination [(20.2±3.8) times vs. (13.2±3.2) times], volume per urination [(119.2±56.7) mL vs. (246.5±59.2) mL], maximum urine flow rate [(8.7±1.5) mL/s vs. (16.5±2.6) mL/s], and residual urine volume [(222.5±55.0) mL vs. (80.8±16.0) mL] were significantly improved, with statistical significance (P<0.05). There were no complications such as bleeding, infection, fever or pain.The 6 patients who had effective outcomes successfully completed phase II surgery, and the fistula was removed.During the follow-up of 1 year, the curative effect was stable, and there were no complications such as electrode displacement, incision infection, or pain in the irritation sites.The residual urine volume of the other 4 unsuccessful patients did not improve significantly, and the electrodes were removed and the vesicostomy tube was retained. [Conclusion] SNM is safe and effective in the treatment of BPH with UAB patients with poor curative effects after TURP.
4.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
5.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
6.Simulation analysis of the protective performance of barium sulfate mortar against positron nuclide γ-rays
Zhiqiang XU ; Huaixin NI ; Jiwu GENG ; Lichun LI ; Zaoqin ZHANG ; Shibiao SU ; Meixia WANG ; Ming LIU
Chinese Journal of Radiological Health 2025;34(2):209-213
Objective To obtain the protective performance parameters of barium sulfate mortar against positron nuclide γ-rays, provide reference data for precise shielding calculations, and guide the design, evaluation, and construction of radiation shielding. Methods The FLUKA program was used to build a model for simulating the dose equivalent rate variation around points of interest under the irradiation of the most commonly used positron nuclide 18F with changes in the thicknesses of lead and barium sulfate mortar. The transmission curves of lead and barium sulfate mortar were fitted, and the half-value layer (HVL) and lead equivalence of barium sulfate mortar were calculated based on the fitted curves. Results The ambient dose equivalent rate coefficient of positron nuclide 18F was 1.339 4×10−1 μSv·m2/MBq·h and the HVL for lead was 4.037 mm, with deviations of 0.043% and 1.53% compared to the values provided in the AAPM Report No. 108, respectively. The HVLs for γ-rays produced by 18F, using barium sulfate mortar with apparent densities of 4.20, 4.00, and 3.90 g/cm3 mixed with 35.2-grade cement in a 4∶1 mass ratio, were 2.914, 2.969, and 3.079 cm, respectively. The lead equivalences were
7.Feasibility of Multiparameter MRI-Guided Percutaneous Biopsy for Central Lung Lesions With Atelectasis
Peipei LI ; Chengli LI ; Yujun XU ; Xiangmeng HE ; Roberto Blanco SEQUEIROS ; Ming LIU
Korean Journal of Radiology 2025;26(5):498-507
Objective:
To prospectively evaluate the feasibility, accuracy, and safety of multiparameter MRI-guided percutaneous biopsy using a 1T open MRI scanner for evaluating suspicious centrally located lung lesions with associated post-obstructive atelectasis.
Materials and Methods:
In this single-center study, MRI-guided percutaneous coaxial cutting biopsy was performed for 107 suspicious central lung lesions with associated post-obstructive atelectasis in 107 patients between July 2015 and December 2020. A fast T2-weighted imaging (T2WI)-turbo spin echo (TSE) sequence and an enhanced fast T1-weighted imaging (T1WI)-TSE sequence were used to identify, localize, and biopsy lung lesions, and diffusion-weighted imaging (DWI) was used as a supplementary sequence for identifying the lesion location. The final diagnosis was confirmed by surgical histopathology or clinical follow-up for a minimum of 24 months. The sensitivity, specificity, and accuracy for diagnosing lung malignancies were calculated, and the complications were recorded for each case.
Results:
Using multiparameter MRI, central lung lesions could be clearly distinguished from post-obstructive atelectasis in 96 patients (89.7%). The sensitivity, specificity, and accuracy of MRI-guided percutaneous biopsy for diagnosing lung malignancy was 97.0% (98/101), 100% (6/6), and 97.2% (104/107), respectively. Self-limited hemoptysis occurred in three patients. Pneumothorax occurred in five patients, of which none required pleural drainage. No serious procedure-related complications were observed.
Conclusion
As a technology that does not involve ionizing radiation, multiparameter MRI-guided percutaneous coaxial cutting biopsy is a safe and accurate diagnostic technique for evaluating centrally located lung lesions associated with post-obstructive atelectasis.
8.Feasibility of Multiparameter MRI-Guided Percutaneous Biopsy for Central Lung Lesions With Atelectasis
Peipei LI ; Chengli LI ; Yujun XU ; Xiangmeng HE ; Roberto Blanco SEQUEIROS ; Ming LIU
Korean Journal of Radiology 2025;26(5):498-507
Objective:
To prospectively evaluate the feasibility, accuracy, and safety of multiparameter MRI-guided percutaneous biopsy using a 1T open MRI scanner for evaluating suspicious centrally located lung lesions with associated post-obstructive atelectasis.
Materials and Methods:
In this single-center study, MRI-guided percutaneous coaxial cutting biopsy was performed for 107 suspicious central lung lesions with associated post-obstructive atelectasis in 107 patients between July 2015 and December 2020. A fast T2-weighted imaging (T2WI)-turbo spin echo (TSE) sequence and an enhanced fast T1-weighted imaging (T1WI)-TSE sequence were used to identify, localize, and biopsy lung lesions, and diffusion-weighted imaging (DWI) was used as a supplementary sequence for identifying the lesion location. The final diagnosis was confirmed by surgical histopathology or clinical follow-up for a minimum of 24 months. The sensitivity, specificity, and accuracy for diagnosing lung malignancies were calculated, and the complications were recorded for each case.
Results:
Using multiparameter MRI, central lung lesions could be clearly distinguished from post-obstructive atelectasis in 96 patients (89.7%). The sensitivity, specificity, and accuracy of MRI-guided percutaneous biopsy for diagnosing lung malignancy was 97.0% (98/101), 100% (6/6), and 97.2% (104/107), respectively. Self-limited hemoptysis occurred in three patients. Pneumothorax occurred in five patients, of which none required pleural drainage. No serious procedure-related complications were observed.
Conclusion
As a technology that does not involve ionizing radiation, multiparameter MRI-guided percutaneous coaxial cutting biopsy is a safe and accurate diagnostic technique for evaluating centrally located lung lesions associated with post-obstructive atelectasis.
9.Feasibility of Multiparameter MRI-Guided Percutaneous Biopsy for Central Lung Lesions With Atelectasis
Peipei LI ; Chengli LI ; Yujun XU ; Xiangmeng HE ; Roberto Blanco SEQUEIROS ; Ming LIU
Korean Journal of Radiology 2025;26(5):498-507
Objective:
To prospectively evaluate the feasibility, accuracy, and safety of multiparameter MRI-guided percutaneous biopsy using a 1T open MRI scanner for evaluating suspicious centrally located lung lesions with associated post-obstructive atelectasis.
Materials and Methods:
In this single-center study, MRI-guided percutaneous coaxial cutting biopsy was performed for 107 suspicious central lung lesions with associated post-obstructive atelectasis in 107 patients between July 2015 and December 2020. A fast T2-weighted imaging (T2WI)-turbo spin echo (TSE) sequence and an enhanced fast T1-weighted imaging (T1WI)-TSE sequence were used to identify, localize, and biopsy lung lesions, and diffusion-weighted imaging (DWI) was used as a supplementary sequence for identifying the lesion location. The final diagnosis was confirmed by surgical histopathology or clinical follow-up for a minimum of 24 months. The sensitivity, specificity, and accuracy for diagnosing lung malignancies were calculated, and the complications were recorded for each case.
Results:
Using multiparameter MRI, central lung lesions could be clearly distinguished from post-obstructive atelectasis in 96 patients (89.7%). The sensitivity, specificity, and accuracy of MRI-guided percutaneous biopsy for diagnosing lung malignancy was 97.0% (98/101), 100% (6/6), and 97.2% (104/107), respectively. Self-limited hemoptysis occurred in three patients. Pneumothorax occurred in five patients, of which none required pleural drainage. No serious procedure-related complications were observed.
Conclusion
As a technology that does not involve ionizing radiation, multiparameter MRI-guided percutaneous coaxial cutting biopsy is a safe and accurate diagnostic technique for evaluating centrally located lung lesions associated with post-obstructive atelectasis.
10.Feasibility of Multiparameter MRI-Guided Percutaneous Biopsy for Central Lung Lesions With Atelectasis
Peipei LI ; Chengli LI ; Yujun XU ; Xiangmeng HE ; Roberto Blanco SEQUEIROS ; Ming LIU
Korean Journal of Radiology 2025;26(5):498-507
Objective:
To prospectively evaluate the feasibility, accuracy, and safety of multiparameter MRI-guided percutaneous biopsy using a 1T open MRI scanner for evaluating suspicious centrally located lung lesions with associated post-obstructive atelectasis.
Materials and Methods:
In this single-center study, MRI-guided percutaneous coaxial cutting biopsy was performed for 107 suspicious central lung lesions with associated post-obstructive atelectasis in 107 patients between July 2015 and December 2020. A fast T2-weighted imaging (T2WI)-turbo spin echo (TSE) sequence and an enhanced fast T1-weighted imaging (T1WI)-TSE sequence were used to identify, localize, and biopsy lung lesions, and diffusion-weighted imaging (DWI) was used as a supplementary sequence for identifying the lesion location. The final diagnosis was confirmed by surgical histopathology or clinical follow-up for a minimum of 24 months. The sensitivity, specificity, and accuracy for diagnosing lung malignancies were calculated, and the complications were recorded for each case.
Results:
Using multiparameter MRI, central lung lesions could be clearly distinguished from post-obstructive atelectasis in 96 patients (89.7%). The sensitivity, specificity, and accuracy of MRI-guided percutaneous biopsy for diagnosing lung malignancy was 97.0% (98/101), 100% (6/6), and 97.2% (104/107), respectively. Self-limited hemoptysis occurred in three patients. Pneumothorax occurred in five patients, of which none required pleural drainage. No serious procedure-related complications were observed.
Conclusion
As a technology that does not involve ionizing radiation, multiparameter MRI-guided percutaneous coaxial cutting biopsy is a safe and accurate diagnostic technique for evaluating centrally located lung lesions associated with post-obstructive atelectasis.

Result Analysis
Print
Save
E-mail