1.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
		                        		
		                        			
		                        			ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway. 
		                        		
		                        		
		                        		
		                        	
2.Influence mechanism of peer attachment on school adaptation of migrant children: the role of psychological resilience and sense of security
Xiaoyan ZHAO ; Min JIN ; Li HAN ; Birui LI ; Peng WANG ; Zanheng ZOU
Sichuan Mental Health 2025;38(3):273-278
		                        		
		                        			
		                        			BackgroundMigrant children face many challenges in the process of social change and adaptation to a new environment, especially in school adaptation. Studies have shown that peer attachment plays a vital role in the social adaptation of children and adolescents, while psychological resilience and sense of security, as important psychological resources, also play a moderating and mediating role in individuals' coping with environmental changes. However, there is a lack of systematic research on how peer attachment affects the school adaptation of migrant children through psychological resilience and whether this process is moderated by sense of security. ObjectiveTo explore the relationship between peer attachment and school adaptation of migrant children and to examine the path of psychological resilience and sense of security in it, so as to provide references for improving the school adaptation of migrant children. MethodsUsing cluster sampling method, 695 migrant children in grades 4 to 6 of a primary school in an urban-rural fringe area of Sichuan Province were selected from April 1 to 30, 2022. Assessments were conducted using Revised Inventory for Parent and Peer Attachment (IPPA-R), Resilience Scale for Chinese Adolescents (RSCA), Scale of Sense of Security of Children Left Behind (SSSCLB) and Scale of School Adjustment of Student (SSAS). Process 4.1 was used to examine the role of psychological resilience and sense of security. ResultsA total of 631 (90.79%) valid questionnaires were gathered. There were significant positive correlations among IPPA-R peer attachment subscale score, RSCA score, SSSCLB score and SSAS score (r=0.160~0.600, P<0.01). Peer attachment had a significant positive predictive effect on the school adaptation (β=0.178, P<0.01) and psychological resilience (β=0.518, P<0.01) of migrant children. Psychological resilience had positive predictive effect on the school adaptation (β=0.467, P<0.01). Psychological resilience played a partial mediating role in the relationship between peer attachment and school adaptation, with the mediating effect value was 0.242 (95% CI: 0.184~0.302), accounting for 57.62% of the total effect. Moreover, the interaction term between psychological resilience and sense of security had a significant predictive effect on school adaptation (β=0.103, P<0.01). ConclusionThe psychological resilience of migrant children plays a partial mediating role in the relationship between peer attachment and school adaptation, and the status of sense of security can moderate the relationship between psychological resilience and school adaptation of migrant children. 
		                        		
		                        		
		                        		
		                        	
3.Effect of comorbidity for patients with non-small cell lung cancer on exercise tolerance and cardiopulmonary function: A propensity score matching study
Xinyu WANG ; Jin LI ; Min GAO ; Xin RAN ; Yiman TONG ; Wei CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1115-1120
		                        		
		                        			
		                        			Objective To observe the effect of comorbidity for patients with non-small cell lung cancer (NSCLC) on exercise tolerance and cardiopulmonary function. Methods NSCLC patients who underwent cardiopulmonary exercise testing (CPET) before surgery were retrospectively included. According to the Charlson comorbidity index (CCI) score, patients were divided into two groups: a CCI≥3 group and a CCI<3 group. The patients were matched with a ratio of 1 : 1 by propensity score matching according to the age, body mass index, sex, smoking history, exercise habits, pathological stage and type of surgery. After matching, CPET indexes were compared between the two groups to explore the differences in exercise tolerance and cardiopulmonary function. Results A total of 276 patients were included before matching. After matching, 56 patients were enrolled with 28 patients in each group, including 38 (67.9%) males and 18 (32.1%) females with an average age of (70.7±6.8) years. Compared with the CCI<3 group, work rate at peak (WR peak), WR peak/predicted value (WR peak%), kilogram oxygen uptake at anaerobic threshold (VO2/kg AT), VO2/kg peak, VO2/kg peak%, peak carbon dioxide output, the minute ventilation to carbon dioxide production slope, O2 pulse peak and O2 pulse peak% of CCI≥3 group were statistically different (P<0.05). Among them, the rate of postoperative pulmonary complication in the CCI≥3 group was higher than that in the CCI<3 group (60.7% vs. 32.1%, P=0.032). Conclusion In the NSCLC patients, exercise tolerance and cardiopulmonary function decreased in patients with CCI≥3 compared with those with CCI<3. CPET can provide an objective basis for risk assessment in patients with comorbidity scored by CCI for pulmonary resection.
		                        		
		                        		
		                        		
		                        	
4.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
		                        		
		                        			
		                        			Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian. 
		                        		
		                        		
		                        		
		                        	
5.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
		                        		
		                        			
		                        			Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms. 
		                        		
		                        		
		                        		
		                        	
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
		                        		
		                        			
		                        			Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Bone Remodeling/physiology*
		                        			;
		                        		
		                        			Caspase 1
		                        			;
		                        		
		                        			Periodontal Ligament
		                        			;
		                        		
		                        			Pyroptosis
		                        			;
		                        		
		                        			Tooth Movement Techniques
		                        			
		                        		
		                        	
7. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
		                        		
		                        			
		                        			 Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I 
		                        		
		                        		
		                        		
		                        	
8.A case-crossover study on the impact of air pollution on the number of pediatric respiratory outpatient and emergency visits in a hospital in Shanghai
Peihua FU ; Julong LI ; Jing ZHANG ; Qiaozhen ZHANG ; Huimin JIN ; Min SONG ; Yanhan ZHANG ; Zhen GU
Journal of Public Health and Preventive Medicine 2024;35(1):29-33
		                        		
		                        			
		                        			Objective  To investigate the correlation between the concentration of air pollutants (PM10, SO2, NO2) and the number of outpatient and emergency visits for pediatric respiratory diseases in a general hospital in Shanghai.  Methods  Data including pediatric respiratory disease outpatient and emergency visits in a hospital in Pudong New Area of Shanghai from May 1, 2013 to March 20, 2022 were collected. Daily concentration of air pollutants including PM10, SO2 and NO2 and meteorological data in Pudong New Area during the same period were collected. A case-crossover study with distributed lag non-linear model was conducted to explore the correlation between air pollutants (PM10, SO2, NO2) and the number of outpatient and emergency visits for pediatric respiratory diseases.  Results  The concentrations of PM10, SO2 and NO2 were positively with the number of outpatient and emergency visits for pediatric respiratory diseases. The strongest cumulative effect was observed on six days lag (Lag0-5) for PM10. For a 10 μg/m3 increase of the concentrations of PM10, the corresponding increase of cumulative pediatric respiratory disease outpatients was 1.10% (95%CI:0.97%, 1.23%) in Lag0-5. The strongest cumulative effect was observed on eight days lag (Lag0-7) for SO2 and NO2. For a 10 μg /m3 increase of the concentrations of SO2 and NO2, the corresponding increase of cumulative pediatric respiratory disease outpatients was 5.64% (95%CI:5.16%, 6.13%) and 5.41% (95%CI:5.15%, 5.66%) in Lag 0-7, respectively. The association of PM10 and SO2 with the number of pediatric respiratory disease visits in males was significantly stronger than that in females. The impact of PM10 on the number of pediatric respiratory disease visits in children aged 0-6 was higher than that in children aged 7-14, while the impact of SO2 and NO2 on the number of pediatric respiratory disease visits in children aged 7-14 was higher than that in children aged 0-6.  Conclusion  The concentration of ambient PM10, SO2, and NO2 is positively correlated with outpatient and emergency visits for pediatric respiratory diseases, with obvious lag and cumulative effect. Boys and children aged 0-6 are more susceptible to the hazard of air pollution.
		                        		
		                        		
		                        		
		                        	
9.Pharmacological Effect of Phellodendri Chinensis Cortex and Active Components on Gout: A Review
Min LI ; Yunyun QUAN ; Ting WANG ; Li LI ; Jin ZENG ; Junning ZHAO ; Jiuzhou MAO ; Yangfan TANG ; Zhujun YIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):286-298
		                        		
		                        			
		                        			Gout is a metabolic disease closely associated with hyperuricemia and urate deposition. Because of the complex pathogenesis, high morbidity, multiple complications, and increasingly young patients, gout has received worldwide attention. Currently, western medicine mainly treats gout by lowering the uric acid level and reducing inflammation, which, however, causes serious adverse reactions and has contraindications. Phellodendri Chinensis Cortex (PCC) is the dried bark of Phellodendron chinense, with the effects of clearing heat, drying dampness, purging fire, detoxifying, and treating sores. Studies have shown that PCC and its active components have anti-inflammatory, pain-relieving, uric acid-lowering, and anti-gout activities, with extensive sources and high safety. PCC and its active components could prevent and treat gout through multi-targets and multi-pathways, whereas the systematic review remains to be carried out. Therefore, this paper summarized the pharmacological activities and mechanisms of PCC and its active components in the treatment of gout. The available studies have shown that PCC and its active components exert the anti-gout effect by lowering the uric acid level, reducing inflammation, alleviating oxidative stress, and regulationg intestinal flora, and protecting the kidneys. Particularly, the active components represented by alkaloids contribute obviously to the therapeutic effect of of PCC. Herein, we analyzed the problems and future development of the research on PCC, aiming to provide theoretical support and a scientific basis for the research and development of new drugs against gout. 
		                        		
		                        		
		                        		
		                        	
10.Protective effects of cinnamaldehyde on benzene-induced immune and oxidative stress injury in mice
Mengyang LI ; Gui WANG ; Yamei QIAO ; Pingyu WANG ; Min JIN ; Dong YANG ; Junwen LI
Military Medical Sciences 2024;48(1):44-51
		                        		
		                        			
		                        			Objective To investigate the effects of cinnamaldehyde,the main active component of cinnamon,on benzene-induced immune injury in mice and the related mechanism.Methods Forty male BALB/c mice were randomly divided into the control group,model group(benzene 500 mg/kg),cinnamaldehyde low,medium and high dose groups(5,25,50 mg/kg),with 8 mice in each group.Except the control group,mice in each group were treated with benzene by intragastric administration daily to induce immune and oxidative stress damage,but the intervention group was treated with cinnamaldehyde 5 times/week for 3 weeks.After medication,peripheral blood was collected 24 h after the last gavage for blood cell count,and the changes in body weight of mice in each group were observed.The pathological structure of the spleen and thymus was observed via hematoxylin-eosin(HE)staining.Peripheral blood mononuclear cells(PBMCs)of mice were extracted and the amounts of reactive oxygen species(ROS)and ATP in mitochondria were measured.Plasma levels of malondialdehyde(MDA)were measured using the barbituric acid method,the activity of glutathione peroxidase(GSH-PX)in plasmawith the dithiodinitrobenzoic acid methodand the activity of total superoxide dismutase(SOD)in plasma using the hydroxylamine method.Results After exposure to benzene,the body weight of the model group became lower(P<0.05).The spleen and thymus were damaged,and the indexes of the spleen and thymus were decreased(P<0.05).Counts of peripheral white blood cells and lymphocyteswere decreased(P<0.05).The activities of GSH and SOD in plasma were decreased(P<0.05),but the content of MDA was increased(P<0.05).The amount of mitochondrial ROS in PBMC was increased,while the ATP content was decreased(P<0.05).The weight of mice increased after treatment with cinnamaldehyde.The spleen and thymus tissues recovered well,and the indexes of the spleen and thymus were increased(P<0.05).Counts of peripheral white blood cells and lymphocytesin the high dose cinnamaldehyde group were increased(P<0.05).The activities of GSH and SOD in plasma were increased,while the content of MDA was decreased(P<0.05).The amount of mitochondrial ROS in PBMC was decreased,but the ATP content was increased(P<0.05).Treatment with cinnamaldehyde could alleviate the damage to the mitochondrial function of PBMC induced by benzene in mice,and 50 mg/kg was the best dose(P<0.05).The therapeutic effect of cinnamaldehyde had a dose-response relationship.Conclusion Cinnamaldehyde can inhibit benzene-induced immune injury and oxidative stress injury in mice by delivering an antioxidant effect and improving mitochondrial enhancement of PBMC.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail