1.Analysis of Dynamic Change Patterns of Color and Composition During Fermentation of Myristicae Semen Koji
Zhenxing WANG ; Mengmeng FAN ; Le NIU ; Suqin CAO ; Hongwei LI ; Zhenling ZHANG ; Hanwei LI ; Jianguang ZHU ; Kai LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):222-229
ObjectiveTo explore the changes in volatile components, total polysaccharides, enzyme activity, and chromaticity value of Myristicae Semen Koji(MSK) during the fermentation process, and conduct correlation analysis. MethodsBased on gas chromatography-mass spectrometry(GC-MS), the changes of volatile components in MSK at different fermentation times were identified. The phenol sulfuric acid method, dinitrosalicylic acid method(DNS), and carboxymethyl cellulose sodium salt method(CMC-Na) were used to investigate the total polysaccharide content, amylase activity, and cellulase activity during the fermentation process. Visual analysis technology was used to explore the changes in chromaticity values, revealing the fermentation process of MSK and the dynamic changes of various measurement indicators, partial least squares-discriminant analysis(PLS-DA) was used to explore the differential compounds of MSK at different fermentation degrees, and Pearson correlation analysis was used to explore the correlation between volatile components of MSK and total polysaccharides, enzyme activity, and chromaticity values. ResultsA total of 60 volatile compounds were identified from MSK, the relative contents of components such as (+)-α-pinene, β-phellandrene, β-pinene, (+)-limonene, and p-cymene obviously increased, while the relative contents of components such as safrole, methyl isoeugenol, methyleugenol, myristicin, and elemicin significantly decreased. During the fermentation process, the total polysaccharide content showed an upward trend, while the activities of amylase and cellulase showed an initial increase followed by a decrease, and reached their maximum value at 40 h. the overall brightness(L*) and total color difference(ΔE*) gradually increased, while the changes in red-green value(a*) and yellow-blue value(b*) were not obvious. PLS-DA results showed that MSK could be clearly distinguished at different fermentation times, and 13 differential biomarkers were screened out. Pearson correlation analysis results showed that the contents of α-terpinene, β-phellandrene, methyleugenol, β-cubebene and myristic acid had an obvious correlation with chromaticity values. ConclusionAfter fermentation, the volatile components, total polysaccharides, amylase activity, and cellulase activity of MSK undergo significant changes, and there is a clear correlation between them and chromaticity values, which reveals the dynamic changes in the fermentation process and related indicators of MSK, laying a foundation for the quality control.
2.Major Vault Protein in Macrophages Reprograms Immune Microenvironment and Inhibits Occurrence and Development of Liver Cancer
Shimeng ZHOU ; Mengmeng LI ; Shouyu WANG
Cancer Research on Prevention and Treatment 2025;52(2):118-126
Objective To explore the role and molecular mechanism of major vault protein (MVP) in tumor-associated macrophages in the occurrence and development of liver cancer. Methods The expression of MVP in macrophages was analyzed by bioinformatics method and multi-fluorescent immunohistochemical staining. Mice with MVP deficiency in macrophages were constructed by Cre/LoxP recombinant enzyme system. The proliferation and migration abilities of tumor cells were detected by cloning formation and Transwell migration assays. The effect of MVP in macrophages on tumorigenesis and development was investigated by mouse primary liver cancer model and subcutaneous tumor transplantation model. The effect of MVP on the tumor microenvironment was investigated by multi-fluorescent immunohistochemical staining. The effect of MVP on CD8+ T cells was detected by cell co-culture, flow cytometry, qPCR, and ELISA. Results The high expression of MVP in tumor-associated macrophages. The downregulation of the expression of MVP in tumor-associated macrophages compared with para-carcinoma tissues. MVP deficiency in macrophages promoted the proliferation and migration of tumor cells (P<0.05), promoted the development of tumor in vivo (P<0.05), formed an immunosuppressive microenvironment and weakened CD8+ T cell-mediated anti-tumor immunity (P<0.05). Conclusion MVP deficiency in macrophages can promote the occurrence and development of liver cancer by suppressing the function of CD8+ T cells.
3.Fufang Kangjiaolv Capsules Treat Anxiety in Rat Model of Chronic Restraint Stress via Microbiota-gut-brain Axis
Wenxin FAN ; Tingyue JIANG ; Yu WANG ; Ge ZHANG ; Yifan LU ; Mengmeng LIU ; Jiayuan LI ; Renzhi MA ; Jinli SHI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):95-107
ObjectiveTo observe the intervention effect of Fufang Kangjiaolv capsules on anxiety-like behaviors in the rat model of chronic restraint stress (CRS) and explore the mechanism underlying the anti-anxiety effect via the microbiota-gut-brain axis. MethodsRats were assigned into blank, model, positive drug (diazepam, 1 mg·kg-1), and low-, medium-, and high-dose (0.75, 1.5, 3 g·kg-1, respectively) Fufang Kangjiaolv capsules groups. After 14 days of administration, the elevated plus maze test, open field test, light and dark box test, and marble burying test were performed. Hematoxylin-eosin staining was employed to observe the pathological changes in the hippocampus and colon of rats, and Nissl staining was conducted to observe the damage of hippocampal neurons. The gut microbiota was analyzed by 16S rRNA gene sequencing. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was employed to determine the mRNA levels of zonula occludens-1 (ZO-1) and occludin in the colon of rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the colon, serum, and hippocampus were determined by enzyme-linked immunosorbent assay. Western blot was employed to determine the protein levels of ZO-1, occludin, nuclear factor-κB p65 (NF-κB p65) in the colon tissue and NF-κB p65 and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. ResultsCompared with the blank group, the model group showed reductions in the time and frequency ratio of rats entering the elevated plus maze, the time and frequency of rats entering the central area of the open field, the time of entering the open box, the times of passing through the light and dark box, and the number of unburied beads (P<0.05, P<0.01). Compared with the model group, Fufang Kangjiaolv capsules ameliorated the anxiety of the model rats to varying degrees, and the high-dose group had the best effect, with increases in the proportions of time and frequency of rats entering the open arm in the elevated plus maze (P<0.05), the number of rats entering the central area in the open field (P<0.05), the time of entering the open box, the times of passing through the light and dark boxes, and the number of unburied beads (P<0.01). Moreover, the high-dose group showed alleviated pathological damage of hippocampal neurons and colon. The results of 16S rRNA gene sequencing showed that the model group had increased relative abundance of Firmicutes, Deferribacterota, Romboutsia, and Phascolarctobacterium, while it had decreased relative abundance of Bavcteroidota and Lactobacillus. The drug administration groups showed increased relative abundance of Bavcteroidota, Bacteroides, norank f norank o Clostridia UCG-014, and Blautia and decreased relative abundance of Firmicutes and Deferribacterota. Compared with the blank group, the model group showed down-regulated protein and mRNA levels of ZO-1 and occludin in the colon (P<0.01), elevated levels of TNF-α, IL-6, and IL-β in the colon, serum, and hippocampus (P<0.01), up-regulated protein level of NF-κB p65 in the colon and hippocampus (P<0.01), and down-regulated protein level of BDNF in the hippocampus (P<0.05). Compared with the model group, high-dose Fufang Kangjiaolv capsules up-regulated the mRNA levels of ZO-1 and occludin in the colon (P<0.01), lowered the levels of TNF-α, IL-6, and IL-β in the colon, serum, and hippocampus (P<0.01), up-regulated the protein levels of ZO-1 (P<0.01) and occludin (P<0.05) in the colon, down-regulated the protein level of NF-κB p65 in the colon and hippocampus (P<0.05), and up-regulated the protein level of BDNF in the hippocampus. ConclusionFufang Kangjiaolv capsules can reduce the anxiety-like behaviors in the rat model of CRS by regulating the gut microbiota disturbance, up-regulating the expression of tight junction proteins in the colon, repairing intestinal mucosal mechanical barrier, and down-regulating NF-κB/BDNF signaling pathway, thereby reducing peripheral and central inflammation. This study proves the hypothesis that Fufang Kangjiaolv capsules play an anti-anxiety role via the microbiota-gut-brain axis, providing a new idea for further research.
4.Pharmacoeconomic evaluation of finerenone combined with standard regimen in the treatment of heart failure with preserved or mildly reduced ejection fraction
Runan XIA ; Xu WANG ; Huijuan CHEN ; Mengyu JIANG ; Panpan DI ; Mengmeng ZHAO ; Li LIU ; Hai LIANG
China Pharmacy 2025;36(14):1770-1774
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard of care (SoC) in the treatment of heart failure with mildly reduced ejection fraction (HFmrEF) or preserved ejection fraction (HFpEF). METHODS Based on a phase Ⅲ clinical trial, a Markov model was constructed from the perspective of China’s healthcare system to compare the treatment outcomes of finerenone combined with SoC regimen versus SoC regimen alone in the treatment of different cardiac functional statuses of HFmrEF/HFpEF. Using quality-adjusted life year (QALY) as the health output index, 3 times China’s per capita GDP in 2023 as the willingness-to-pay (WTP) threshold, a simulation was conducted with a 3-month cycle length and a 10- year time horizon, incorporating an annual discount rate of 5%. The dynamic changes across various stages of HFmrEF/HFpEF treated with finerenone combined with SoC versus SoC alone were simulated to evaluate the long-term effectiveness and costs of the two treatment strategies. Additionally, one-way sensitivity analysis and probabilistic sensitivity analysis were performed, to test the robustness of the results. RESULTS The incremental cost-effectiveness ratio (ICER) of the finerenone combined with SoC regimen versus SoC regimen alone was 179 504.75 yuan/QALY, which was below the WTP threshold set in this study, indicating that the finerenone combined with SoC regimen possessed certain economic advantages. The results of one-way sensitivity analysis showed that the utility value of NYHA Ⅱ status, the drug price of finerenone, the discount rate, and the probability of hospital transfer for both groups had a great influence on ICER, but did not affect the robustness of the model. The probabilistic sensitivity analysis also confirmed the robustness of the model. CONCLUSIONS Under the WTP threshold set in this study, finerenone combined with SoC is cost-effective in the treatment of HFmrEF/HFpEF, compared with the SoC regimen.
5.Advances in the clinical application and safety of bispecific antibodies for cancer therapy
Mengmeng LIN ; Xu LIN ; Yixuan WANG ; Danna JIANG ; Shanshan SHI ; Yangling LI
China Pharmacy 2025;36(19):2466-2472
Bispecific antibodies (BsAbs), as an important recent innovation in the field of tumor immunotherapy in recent years, can simultaneously or sequentially target different antigens or two different epitopes of the same antigen. Compared with traditional monoclonal antibodies, they can produce superior therapeutic effects. This article reviews the progress in clinical applications and safety research of BsAbs in cancer therapy, revealing that they (such as blinatumomab, glofitamab, teclistamab, amivantamab, etc.) exhibit significant therapeutic efficacy against hematological malignancies, lung cancer, cervical cancer, melanoma, and other cancers. For cytokine release syndrome (CRS) induced by BsAbs, prophylactic or pre-emptive medication is commonly administered in clinical practice; for neurotoxicity and infections triggered by BsAbs, clinical practice necessitates rigorous monitoring of patients’ vital signs and the provision of essential treatments. In addition, different BsAbs exhibit variations in escalation dose, infusion rate, storage duration, and equipment requirements. Therefore, strict adherence to the instructions in the drug package inserts is essential during clinical operations to ensure safety and therapeutic efficacy. In the future, more multicenter trials need to be conducted to validate the efficacy and safety of BsAbs across different tumor types and patient populations, and long-term follow-up data should be accumulated to optimize treatment cycles and dosage regimens.
6.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.
7.Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis
Zhijie KANG ; Zhenhua CAO ; Yangyang XU ; Yunfeng ZHANG ; Feng JIN ; Baoke SU ; Lidong WANG ; Ling TONG ; Qinghua LIU ; Yuan FANG ; Lirong SHA ; Liang LIANG ; Mengmeng LI ; Yifei DU ; Lin LIN ; Haiyan WANG ; Xiaohe LI ; Zhijun LI
Chinese Journal of Tissue Engineering Research 2024;28(6):840-846
BACKGROUND:Ankylosing spondylitis is a chronic inflammatory disease with chronic rheumatic immunity.Soft tissue ossification and fusion and spinal stiffness can cause biomechanical changes. OBJECTIVE:To reconstruct the lumbar-sacral intervertebral disc in ankylosing spondylitis patients with lumbar kyphosis by finite element analysis,and to study the range of motion of each segment of T11-S1 and the biomechanical characteristics of annulus fibrosus and nucleus pulposus. METHODS:The imaging data were obtained from an ankylosing spondylitis patient with lumbar kyphosis.The original CT image data of continuously scanned spine were imported into Mimics 21.0 in DICOM format,and T11-S1 was reconstructed respectively.The established model was imported into 3-Matic software in the format of"Stl"to reconstruct the intervertebral disc,and the fibrous intervertebral disc model was obtained.The improved model was further imported into Hypermesh software,and the vertebra,nucleus pulposus,annulus fibrosus and ligament were mesh-divided.After the material properties were given,the model was imported into ABAQUS software to observe the range of motion of each vertebral body in seven different working conditions of T11-S1,and analyze the biomechanical characteristics of each segment of annulus fibrosus and nucleus pulposus. RESULTS AND CONCLUSION:(1)The range of motion of L1 vertebrae was higher than that of other vertebrae under six different working conditions:extension,forward flexion,rotation(left and right),and lateral flexion(left and right).The maximum range of motion was 2.18° during L1 vertebral flexion,and the minimum range of motion was 0.12° during L5 vertebral extension.(2)The annular fiber flexion at L2-L3 segments was greater than the extension(P<0.05),and the annular fiber flexion at L3-L4 and L4-L5 segments was less than the extension(P<0.05).The left rotation of L1-L2 annular fibers was greater than the right rotation(P<0.05).The left flexion of the annulus was greater than the right flexion in L1-L2,L2-L3,L3-L4,L4-L5 and L5-S1 segments(P<0.05).(3)The nucleus pulposus stresses of T11-L12,L1-L2,L2-L3,L3-L4 and L4-L5 segments in forward flexion were greater than in extension(P<0.05).The left rotation of T12-L1 and L3-L4 segments was smaller than the right rotation(P<0.05),and that of T11-T12,L1-L2,and L2-L3 segments was larger than the right rotation(P<0.05).The left flexion was larger than the right flexion in the T11-S1 segment.(4)It is concluded that in ankylosing spondylitis patients with lumbar kyphosis,the minimum range of motion of the vertebral body is located at the L5 vertebral body in extension.To prevent fractures,it is recommended to avoid exercise in the extension position.During the onset of lumbar kyphosis in patients with ankylosing spondylitis,the maximum stress of the annulus fibrosus and nucleus pulposus is located in the L1-L2 segment,which is fixed and will not alter with the change of body position.The late surgical treatment and correction of deformity should focus on releasing the pressure of the annulus fibrosus and nucleus pulposus in this segment to avoid the rupture of the annulus fibrosus and the injury of the nucleus pulposus.
8.Pulsed electromagnetic fields inhibit knee cartilage degeneration in aged rats
Linwei YIN ; Xiarong HUANG ; Guanghua SUN ; Jing LIU ; Peirui ZHONG ; Jinling WANG ; Jiaqian CHEN ; Xing WEN ; Shaoting GAN ; Wentao HU ; Mengmeng LI ; Jun ZHOU
Chinese Journal of Tissue Engineering Research 2024;28(28):4522-4527
BACKGROUND:Pulsed electromagnetic fields,as an important physical therapy,are exactly effective in the treatment of osteoarthritis,but the mechanism has not been fully clarified. OBJECTIVE:To observe the effect of pulsed electromagnetic field on the degeneration of knee joint cartilage in aged rats. METHODS:Eight 6-month-old Sprague-Dawley rats were selected as the young group and were subjected to normal diet with no treatment.Sixteen 22-month-old Sprague-Dawley rats were randomly divided into old group(n=8)and pulsed electromagnetic field group(n=8).The rats in the pulsed electromagnetic field group were subjected to a pulsed electromagnetic field intervention,once a day,5 days per week for continuous 8 weeks.The rats in the old group were given no treatment.All rats were anesthetized and executed after 8 weeks for the detection of relevant indexes. RESULTS AND CONCLUSION:Compared with the young group,serum type Ⅱ collagen C-terminal peptide level was increased in the old group(P<0.05);compared with the old group,serum type Ⅱ collagen C-terminal peptide level was decreased in the pulsed electromagnetic field group(P<0.05).Micro-CT showed that the bone volume fraction,bone mineral density,and number of bone trabeculae decreased(P<0.05)and the trabecular separation increased(P<0.05)in the tibia of rats in the aged group compared with the young group;and the bone volume fraction,bone density,and number of trabeculae increased(P<0.05)and the trabecular separation decreased(P<0.05)in the tibia of rats in the pulsed electromagnetic field group compared with the aged group.The tibial plateau Safranin O-fast green staining showed that the articular cartilage structure of rats in the aged group was disorganized,and the number of chondrocytes was obviously reduced,and the tidal line could not be distinguished.The above results were improved in the pulsed electromagnetic field group.RT-qPCR and western blot assay showed that the mRNA and protein expression levels of matrix metalloproteinase 1,matrix metalloproteinase 13,P53 and P21 in the articular cartilage and subchondral bone of rats were elevated in the aged group compared with the young group(P<0.05)and decreased in the pulsed electromagnetic field group compared with the old group(P<0.05).To conclude,pulsed electromagnetic fields may improve osteoarthritis in aged rats by inhibiting chondrocyte senescence,alleviating articular cartilage degradation and inhibiting subchondral bone osteoporosis through suppressing the expression of P53/P21.
9.Early experience with mechanical hemodynamic support for catheter ablation of malignant ventricular tachycardia
Mengmeng LI ; Yang YANG ; Deyong LONG ; Chenxi JIANG ; Ribo TANG ; Caihua SANG ; Wei WANG ; Xin ZHAO ; Xueyuan GUO ; Songnan LI ; Changyi LI ; Man NING ; Changqi JIA ; Li FENG ; Dan WEN ; Hui ZHU ; Yuexin JIANG ; Fang LIU ; Tong LIU ; Jianzeng DONG ; Changsheng MA
Chinese Journal of Cardiology 2024;52(7):768-776
Objective:To explore the role of mechanical hemodynamic support (MHS) in mapping and catheter ablation of patients with hemodynamically unstable ventricular tachycardia (VT), report single-center experience in a cohort of consecutive patients receiving VT ablation during MHS therapy, and provide evidence-based medical evidence for clinical practice.Methods:This was a retrospective cohort study. Patients with hemodynamically unstable VT who underwent catheter ablation with MHS at Beijing Anzhen Hospital, Capital Medical University between August 2021 and December 2023 were included. Patients were divided into rescue group and preventive group according to the purpose of treatment. Their demographic data, periprocedural details, and clinical outcomes were collected and analyzed.Results:A total of 15 patients with hemodynamically unstable VT were included (8 patients in the rescue group and 7 patients in the preventive group). The acute procedure was successful in all patients. One patient in the rescue group had surgical left ventricular assist device (LVAD) implantation, remaining 14 patients received extracorporeal membrane oxygenation (ECMO) for circulation support. ECMO decannulation was performed in 12 patients due to clinical and hemodynamic stability, of which 6 patients were decannulation immediately after surgery and the remaining patients were decannulation at 2.0 (2.5) d after surgery. Two patients in the rescue group died during the index admission due to refractory heart failure and cerebral hemorrhage. During a median follow-up of 30 d (1 d to 12 months), one patient with LVAD had one episode of ventricular fibrillation at 6 months after discharge, and no further episodes of ventricular fibrillation and/or VT occurred after treatment with antiarrhythmic drugs. No malignant ventricular arrhythmia occurred in the remaining 12 patients who were followed up.Conclusions:MHS contributes to the successful completion of mapping and catheter ablation in patients with hemodynamically unstable VT, providing desirable hemodynamic status for emergency and elective conditions.
10.Relationship Between Gut Microbiota Dysbiosis and Cardiometabolic Diseases Based on "Heart-spleen-intestine" Axis
Qian XU ; Wenting WANG ; Yiwen LI ; Jing CUI ; Mengmeng ZHU ; Yanfei LIU ; Yue LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(20):203-211
Cardiometabolic disease is a clinical syndrome with a causal relationship between metabolic abnormalities and cardiovascular damage. With its global incidence and related mortality rates continually rising, it has become a major health concern worldwide. The role of the gut microbiome and its metabolic products in cardiovascular metabolic health has received widespread attention, with gut microbiota dysbiosis considered a key factor in promoting the development of cardiometabolic disease. Dysbiosis disrupts the balance of the "heart-spleen-intestine" axis, leading to dysfunction of the spleen and intestines, which triggers metabolic disorders and accelerates the progression of cardiometabolic disease. Cardiac dysfunction can also negatively affect spleen and intestinal function, leading to imbalances in the heart and spleen, disharmony in Qi and blood, and exacerbating metabolic anomalies and further dysbiosis, thus forming a vicious cycle. From a modern biological perspective, the gut microbiome and its metabolic products can influence disease progression by modulating inflammatory responses and immune imbalances, leading to endothelial dysfunction and metabolic disorders, thereby increasing the risk of cardiometabolic disease. Additionally, the article proposes strategies for managing cardiometabolic disease by regulating the gut microbiome through a combination of Chinese and western medicine approaches. Traditional Chinese medicine(TCM) treatment starts from the gut microbiome, using the "heart-spleen-intestine" axis as a mediator to regulate cardiovascular metabolic health, highlighting the unique advantages of TCM in targeting the gut microbiome to treat cardiometabolic disease. This article takes the TCM theory of the "heart-spleen-intestine" axis as a starting point, discusses the pivotal role played by this axis in the connection between gut microbiome dysbiosis and the development of cardiometabolic disease, aiming to provide a new perspective for the integrated traditional Chinese and western medical research on cardiometabolic disease, offering scientific evidence and practical guidance to improve the prognosis and quality of life for patients.

Result Analysis
Print
Save
E-mail