1.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
2.Pathological changes in the total knee joint during spontaneous knee osteoarthritis in guinea pigs at different months of age
Xiaoshen HU ; Huijing LI ; Junling LYU ; Xianjun XIAO ; Juan LI ; Xiang LI ; Ling LIU ; Rongjiang JIN
Chinese Journal of Tissue Engineering Research 2025;29(11):2218-2224
BACKGROUND:The guinea pig is considered to be the most useful spontaneous model for evaluating primary osteoarthritis in humans because of its similar knee joint structure and close histopathologic features to those of humans. OBJECTIVE:To investigate the pathological process of spontaneous knee osteoarthritis in guinea pigs by analyzing the histopathology of the total knee joint of guinea pigs aged 1 to 18 months. METHODS:Eight healthy female Hartley guinea pigs in each age group of 1,6,10,14,16,and 18 months old were selected.The quadriceps femoris was taken for hematoxylin-eosin staining,and the total knee joint was stained with hematoxylin-eosin and toluidine blue.The histopathology of the cartilage,subchondral bone,synovium,meniscus,and muscles were observed under light microscope.Mankin's score and synovitis score were compared,and the correlation analysis was conducted. RESULTS AND CONCLUSION:As the guinea pig age increased,the Mankin's score increased(P<0.05),and the pathological score of synovitis also gradually increased(P<0.05),and there was a significant positive correlation between the two(r=0.641,P<0.001).The incidence rate of subchondral bone marrow lesion in 18-month-old guinea pigs was 50%,and the incidence of meniscus injury was 37.5%.In addition,osteophyte and narrowing of the joint space were observed,and only a few guinea pigs had inflammation in the quadriceps femoris.To conclude,guinea pigs develop significant cartilage defects,synovial inflammation,subchondral bone lesions,meniscus injury,osteophyte formation,and joint space narrowing as they age,all of which are similar to the pathological processes of primary knee osteoarthritis in humans,making it an ideal model of spontaneous knee osteoarthritis.
3.Dingchan Granule (定颤颗粒) for Paroxysmal Atrial Fibrillation with Syndrome of Qi Stagnation and Blood Stasis:A Randomized,Double-Blinded,Placebo-Controlled Clinical Trial
Xiaozhen CHENG ; Xingjuan CHEN ; Weina LI ; Lu XIAO ; Yunhan WANG ; Yun XU ; Yueyue NIU ; Ling FENG
Journal of Traditional Chinese Medicine 2025;66(12):1233-1240
ObjectiveTo observe the clinical effectiveness and safety of Dingchan Granule (定颤颗粒) for paroxysmal atrial fibrillation with syndrome of qi stagnation and blood stasis. MethodsUsing a randomised, double-blind, placebo controlled study method, 90 patients with paroxysmal atrial fibrillation with qi stagnation and blood stasis syndrome were divided into 45 cases each in the treatment group and the control group. Both groups were given conventional western medicine treatment, and the treatment group was additionally treated with Dingchan Granule, while the control group was treated with Dingchan Granule placebo, both of which were taken orally for 8 g each time twice a day. Both groups were treated for 8 weeks. We compared the clinical effectiveness, the improvement of traditional Chinese medicine (TCM) symptoms and the recovery rate of atrial fibrillation between the two groups. We compared the number and duration of atrial fibrillation episodes, TCM symptoms score, atrial fibrillation symptom classification, 24-hour average ventricular rate, Pittsburgh Sleep Quality Index (PSQI), anxiety index, depression index before and after treatment, and evaluated the safety of the two groups. ResultsThe total clinical effectiveness rate in the treatment group was 82.22% (37/45), which was better than 60.00% (27/45) in the control group (P<0.05). The total effective rate of TCM syndrome effectiveness in the treatment group was 88.89% (40/45), which was better than 66.67% (30/45) in the control group (P<0.05); and the rate of atrial fibrillation regression in the treatment group was 26.67% (12/45), better than 6.67% (3/45) in the control group (P<0.05). The number and duration of atrial fibrillation episodes in both groups were significantly decreased (P<0.01), and the number and duration of atrial fibrillation episodes in the treatment group were lower than those in the control group (P<0.01). The TCM syndrome scores of both groups after treatment were significantly lower than before treatment (P<0.01), and the scores of the treatment group was lower than those of the control group (P<0.05). The severity of atrial fibrillation symptoms and the grading of atrial fibrillation symptoms in both groups after treatment were improved (P<0.01), and the degree of symptom improvement in the treatment group was better than that in the control group (P<0.01). The 24-hour average ventricular rate of both groups after treatment was significantly lower (P<0.01). The PSQI, anxiety index and depression index of the treatment group were all lower than before treatment (P<0.01), while the PSQI and anxiety index of the control group were both lower than before treatment (P<0.01 or P<0.05), the PSQI, anxiety index and depression index of the treatment group being lower than those of the control group (P<0.05 or P<0.01). No adverse events occurred in both groups, and no abnormalities were observed in blood, urine, stool routine, liver and kidney function, and coagulation function indexes. ConclusionDingchan Granule for paroxysmal atrial fibrillation with qi stagnation and blood stasis syndrome can alleviate clinical symptom, improve TCM symptom scores, increase atrial fibrillation recovery rate, stabilise the average ventricular rate, and significantly improve the quality of sleep, alleviate the anxiety and depression, with a good safety profile.
4.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.
5.Differential Analysis on Chemical Composition and Pharmacodynamic Effect Between Combined Decoction and Single Decoction of Famous Classical Formula Huaganjian
Yang WANG ; Gaoju ZHANG ; Ling LI ; Liping CHEN ; Li ZHANG ; Xiao LIU ; Yuyu ZHANG ; Yuan CUI ; Minglong LI ; Chaomei FU ; Xin YAN ; Yuxin HE ; Qin DONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):199-207
ObjectiveThrough qualitatively and quantitatively analysis of the differences in chemical composition between the combined decoction and single decoction of Huaganjian and comparison of their core efficacy, to explore the rationality of the flexible clinical application of Huaganjian compound preparations and single-flavored dispensing granules. MethodsUltra performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS) was used to qualitatively analyze the combined decoction and single decoction samples of Huaganjian, and meanwhile, the contents of four index components(geniposide, paeoniflorin, hesperidin and paeonol) were quantitatively analyzed by high performance liquid chromatography(HPLC). Nonalcoholic fatty liver disease(NAFLD) rat model induced by high-fat diet was applied to compare the efficacy of combined decoction and single decoction of Huaganjian. A total of 30 male SD rats were randomly divided into the control group, model group, lovastatin group(1.8 mg·kg-1), combined decoction group(1.26 g·kg-1) and single decoction group(1.18 g·kg-1). After successful modeling, lovastatin group, combined decoction group and single decoction group were given corresponding doses of drugs by intragastric administration every day, and the control group and model group were given equal amounts of normal saline by intragastric administration, after 4 weeks of administration, the serum and liver tissues were collected, and the contents of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-C) and high-density lipoprotein cholesterol(HDL-C) in serum of rats were detected, and the liver pathological examination was carried out by hematoxylin-eosin(HE) staining and oil red O staining, so as to compare differences of their efficacy. ResultsSeventy chemical components were initially identified and attributed from the lyophilized powder of the combined decoction and single decoction samples of Huaganjian, and there was no obvious difference in composition between the two. Further quantitative analysis showed that the contents of geniposide, paeoniflorin, hesperidin and paeonol in the combined decoction samples were significantly increased when compared with those of the single decoction samples(P<0.01). The pharmacodynamic results showed that compared with the model group, both the combined and single decoction groups of Huaganjian could improve the liver index of NAFLD rats, reduce the serum levels of AST, ALT, TC, TG and LDL-C, increase the serum level of HDL-C, and ameliorate the pathological changes of liver cell steatosis and fat accumulation. However, there was no significant difference in pharmacodynamic effects between the combined decoction group and the single decoction group. ConclusionThere is no significant difference between the combined decoction and single decoction of Huaganjian in terms of chemical composition, but the contents of the four index components show significantly difference. Both of them can significantly improve the fat accumulation and liver function in NAFLD rats. This study provides a reference basis for the rational clinical application and evaluation of famous classical formula compound preparations and single-flavored dispensing granules.
6.Ferrostatin-1 prevents transfusion-related acute lung injury in mice by inhibiting ferroptosis
Siwei LIU ; Ling XIAO ; Haixia XU ; Jiale CHENG ; Li TIAN ; Zhong LIU
Chinese Journal of Blood Transfusion 2025;38(8):1008-1015
Objective: To investigate the role of ferroptosis in transfusion-related acute lung injury (TRALI) and evaluate the efficacy of the specific inhibitor Ferrostatin-1 (Fer-1), thereby to provide a basis for the prevention and treatment of TRALI. Methods: This study utilized a ”2-hit” model to induce TRALI in mice. The mouse model of TRALI was validated through survival curve analysis, lung tissue wet/dry weight ratio (W/D), myeloperoxidase (MPO) activity, and total protein concentration in lung tissue. Samples from the TRALI model group, LPS group, and control group (n=6) were collected. The occurrence of ferroptosis in TRALI was confirmed by measuring key ferroptosis indicators, including iron concentration in lung tissue, malondialdehyde (MDA) level, lipid peroxidation products (LPO) level, and expression levels of related proteins (GPX4, ACSL4). Additionally, a Fer-1 intervention group was added to evaluate its preventive and therapeutic effects. The survival rates and clinical symptoms of the four groups (n=6) were dynamically monitored, and the degrees of lung injury were assessed. Ferroptosis-related indicators were also measured to elucidate the protective mechanism of Fer-1. Results: A mouse model of TRALI was successfully established. Compared to the control and LPS groups, the TRALI group showed significantly higher levels of ferrous iron [(18.32±1.11) nmol/well, MDA [(14.68±0.96) μmol/L], and LPO [(1.60±0.02) μmol/L] in lung tissue (all P<0.01), along with a downregulation of GPX4 and an upregulation of ACSL4. Fer-1 pretreatment significantly reversed these abnormalities: the W/D ratio decreased to 4.01±0.43, and MPO activity significantly decreased [Fer-1 group: (21 606±4 235) pg/mL vs TRALI group: (30 724±2 616) pg/mL], the total protein concentration in lung tissue of the Fer-1 group decreased by approximately 40.8% compared to the TRALI group (all P<0.01). These changes indicate that the lung injury in mice was alleviated after treatment. Following Fer-1 intervention, ferrous iron concentration [(7.46±1.83) nmol/well] was restored to a level close to that of the control group [(5.48±0.70) nmol/well]. Lipid peroxidation tests further revealed that Fer-1 intervention reduced MDA and LPO levels by 35.8% and 29.4%, respectively (P<0.001). Additionally, the expression levels of GPX4 and ACSL4 proteins returned to near-normal levels in the treated mice (both P>0.05). Conclusion: The progression of TRALI is closely related to the activation of ferroptosis, characterized by iron overload, lipid peroxidation accumulation, and the imbalance of GPX4/ACSL4. Ferrostatin-1 significantly alleviates pulmonary edema and inflammatory damage by inhibiting the ferroptosis pathway, suggesting that targeting ferroptosis may provide a new therapeutic strategy for TRALI.
7.Molecular Mechanisms of RNA Modification Interactions and Their Roles in Cancer Diagnosis and Treatment
Jia-Wen FANG ; Chao ZHE ; Ling-Ting XU ; Lin-Hai LI ; Bin XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2252-2266
RNA modifications constitute a crucial class of post-transcriptional chemical alterations that profoundly influence RNA stability and translational efficiency, thereby shaping cellular protein expression profiles. These diverse chemical marks are ubiquitously involved in key biological processes, including cell proliferation, differentiation, apoptosis, and metastatic potential, and they exert precise regulatory control over these functions. A major advance in the field is the recognition that RNA modifications do not act in isolation. Instead, they participate in complex, dynamic interactions—through synergistic enhancement, antagonism, competitive binding, and functional crosstalk—forming what is now termed the “RNA modification interactome” or “RNA modification interaction network.” The formation and functional operation of this interactome rely on a multilayered regulatory framework orchestrated by RNA-modifying enzymes—commonly referred to as “writers,” “erasers,” and “readers.” These enzymes exhibit hierarchical organization within signaling cascades, often functioning in upstream-downstream sequences and converging at critical regulatory nodes. Their integration is further mediated through shared regulatory elements or the assembly into multi-enzyme complexes. This intricate enzymatic network directly governs and shapes the interdependent relationships among various RNA modifications. This review systematically elucidates the molecular mechanisms underlying both direct and indirect interactions between RNA modifications. Building upon this foundation, we introduce novel quantitative assessment frameworks and predictive disease models designed to leverage these interaction patterns. Importantly, studies across multiple disease contexts have identified core downstream signaling axes driven by specific constellations of interacting RNA modifications. These findings not only deepen our understanding of how RNA modification crosstalk contributes to disease initiation and progression, but also highlight its translational potential. This potential is exemplified by the discovery of diagnostic biomarkers based on interaction signatures and the development of therapeutic strategies targeting pathogenic modification networks. Together, these insights provide a conceptual framework for understanding the dynamic and multidimensional regulatory roles of RNA modifications in cellular systems. In conclusion, the emerging concept of RNA modification crosstalk reveals the extraordinary complexity of post-transcriptional regulation and opens new research avenues. It offers critical insights into the central question of how RNA-modifying enzymes achieve substrate specificity—determining which nucleotides within specific RNA transcripts are selectively modified during defined developmental or pathological stages. Decoding these specificity determinants, shaped in large part by the modification interactome, is essential for fully understanding the biological and pathological significance of the epitranscriptome.
8.Effects of traditional Chinese medicine on treatment outcomes in severe COVID-19 patients: a single-centre study.
Yongjiu XIAO ; Binbin LI ; Chang LIU ; Xiuyu HUANG ; Ling MA ; Zhirong QIAN ; Xiaopeng ZHANG ; Qian ZHANG ; Dunqing LI ; Xiaoqing CAI ; Xiangyong YAN ; Shuping LUO ; Dawei XIANG ; Kun XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):89-96
As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.
Humans
;
COVID-19
;
Medicine, Chinese Traditional
;
SARS-CoV-2
;
Critical Illness
;
Treatment Outcome
9. The molecular mechanism of spleen-strengthening and moisture-nourishing liver prescription in treatment of acute-on-chronic liver failure based on network pharmacology and experimental verification
Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Jian -Ping CHEN ; Xiao-Zhou ZHOU ; Qi HUANG ; Wen-Feng MA ; Zhi-Yi HAN ; Jia-Ling SUN ; Wei ZHANG ; Xin-Feng SUN ; Xiao-Zhou ZHOU ; Jing LI ; Xiao-Zhou ZHOU ; Jian -Ping CHEN
Chinese Pharmacological Bulletin 2024;40(3):557-564
To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL^O. 18 as the screening conditions, and.
10.Mechanism on Banxia Xiexintang Inducing Ferroptosis in Gastric Cancer Cells Based on Nrf2/GPX4 Signaling Pathway
Ling LI ; Yaxing LI ; Xue WANG ; Xiao QIU ; Wei GUO ; Hailiang HUANG ; Xijian LIU ; Tao HAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):10-19
ObjectiveTo observe the effect of Banxia Xiexintang (BXT) on the proliferation of human gastric cancer HGC-27, MKN-45, and AGS cells and its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the effects of different concentrations of BXT-containing serum (5%, 10%, and 20%) on the proliferation of HGC-27, MKN-45, and AGS cells. A mitochondrial membrane potential probe (TMRE) was used to detect the expression of mitochondrial membrane potential in cells. A kit was used to detect iron ion (Fe2+) content, lipid peroxide (LPO), and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expression levels of glycogen synthase3β (GSK3β), phosphorylated GSK3β (p-GSK3β), nuclear factor E2 related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4). The real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of member 11 of the cystine/glutamic acid reverse transporter solute vector family 7 (SLC7A11), member 2 of the heavy chain solute vector family 3 (SLC3A2), transferrin receptor 3 (TFRC), and tumor protein (TP)53. ResultCCK-8 results showed that BXT and capecitabine could significantly reduce the survival rate of three kinds of gastric cancer cells after treatment with drug-containing serum for 24 h (P<0.01). After 48 h of intervention with drug-containing serum, the survival rate of three kinds of gastric cancer cells was significantly decreased in both the capecitabine group and the BXT group compared with the blank group. The BXT group was dose-dependent, with 20% BXT having the most significant effect (P<0.01). In terms of biochemical indicators of ferroptosis, compared with the blank group, BXT and capecitabine significantly decreased the expression of mitochondrial membrane potential (P<0.01) and SOD activity (P<0.01) and significantly increased the contents of LPO and Fe2+ (P<0.01), so as to improve the sensitivity of gastric cancer cells to ferroptosis. In terms of the Nrf2/GPX4 pathway, compared with the blank group, the BXT group could reduce the protein expressions of p-GSK3β, Nrf2, and GPX4 (P<0.01) in gastric cancer cells and increase mRNA expressions of SLC7A11 and SLC3A2 (P<0.05). It could also increase the protein expression of GSK3β (P<0.01) and mRNA expression of TP53 and TFRC (P<0.05, P<0.01) in gastric cancer cells. Inhibition of the Nrf2/GPX4 pathway induces ferroptosis in gastric cancer cells. Compared with the capecitabine group, the 20% BXT group showed a more obvious effect. ConclusionBanxia Xiexintang can induce ferroptosis in gastric cancer cells HGC-27, MKN-45, and AGS by inhibiting the Nrf2/GPX4 pathway.

Result Analysis
Print
Save
E-mail