1.Depressive symptoms and associated factors among middle school and college students from 2021 to 2023 in Hunan Province
Chinese Journal of School Health 2025;46(1):96-101
		                        		
		                        			Objective:
		                        			To investigate the current status and trends of depressive symptoms among middle school and college students in Hunan Province, and to explore the primary related factors of depressive symptoms, so as to provide a scientific basis for strengthening mental health among students.
		                        		
		                        			Methods:
		                        			A total of 279 382 students in Hunan Province were selected through a stratified cluster random sampling method from 2021 to 2023. National Survey Questionnaire on Common Diseases and Health Influencing Factors among Students was adopted for the survey, and the Center for Epidemiological Studies Depression Scale was used to assess their depressive symptoms. The χ 2 test and trend χ 2 test were used to analyze depressive symptoms prevalence and trends, and multivariable Logistic regression was used to analyze the related factors of depressive symptoms.
		                        		
		                        			Results:
		                        			The prevalence of depressive symptoms among students in Hunan Province from 2021 to 2023 were 19.66%, 20.17% and 21.47%, respectively, showing an upward trend ( χ 2 trend =9.07,  P <0.01). In addition, the results of the multivariable Logistic regression analysis showed that students with healthy diet ( OR=0.43, 95%CI =0.40-0.45), adequate sleep ( OR=0.88, 95%CI =0.86-0.90), and acceptable screen time ( OR=0.61, 95%CI =0.60-0.62) had lower risks in depressive symptoms detection, while students with smoking ( OR= 1.95, 95%CI =1.88-2.02), secondhand smoke exposure ( OR=1.33, 95%CI =1.30-1.36) and Internet addiction ( OR= 4.19 , 95%CI =4.05-4.34) had higher risks in depressive symptoms detection, with differences in the degree of association among different genders, educational stages and urban rural groups ( OR=0.40-6.04, Z =-12.69-11.98) ( P <0.05).
		                        		
		                        			Conclusions
		                        			There is an increasing trend of depressive symptoms among middle school and college students in Hunan Province from 2021 to 2023.Targeted depression prevention measures should be taken for students with different demographic characteristics to promote their mental health.
		                        		
		                        		
		                        		
		                        	
2.Protective effects and mechanisms of sodium pyruvate on storage lesions in human red blood cells
Haoning CHEN ; Qi MIAO ; Qiang GAO ; Xin SUN ; Shunyu MEI ; Li WANG ; Yun LIAN ; Honglin LUO ; Chenjie ZHOU ; Hao LI
Chinese Journal of Blood Transfusion 2025;38(6):833-838
		                        		
		                        			
		                        			Objective: To investigate the protective effects and underlying mechanisms of sodium pyruvate (SP) on RBC storage lesions using an oxidative damage model. Methods: Six units of leukocyte-depleted suspended RBCs (discarded for non-infectious reasons within three days post-collection) were randomly assigned to four groups: negative control (NS), positive control (PS), experimental group 1 (SP1), and experimental group 2 (SP2). Oxidative stress was induced in the PS group by the addition of hydrogen peroxide (H
      O
      ), while SP1 and SP2 received SP supplementation at different concentrations (25 mM and 50 mM, respectively) in the presence of H
      O
      . After 1 hour of incubation, RBC morphology was assessed microscopically, and biochemical indicators including glutathione (GSH), malondialdehyde (MDA), methemoglobin (MetHb), adenosine triphosphate (ATP), and Na
      /K
      -ATPase activity were measured. Results: RBCs in the PS group exhibited pronounced morphological damage, including cell shrinkage and echinocyte formation, whereas both SP-treated groups showed significantly reduced structural injury. SP treatment led to elevated GSH levels and decreased concentrations of MDA and MetHb, suggesting attenuation of oxidative stress. Additionally, SP enhanced intracellular ATP levels and Na
      /K
      -ATPase activity, thereby contributing to membrane stability. Notably, the SP2 group (50 mM) demonstrated superior protective effects compared to SP1 (25 mM). Conclusion: Sodium pyruvate effectively attenuates oxidative storage lesions in RBCs, primarily through its antioxidant properties, energy metabolism supporting ability, and celluar membrane stabilizing function. These findings suggest SP as a promising additive for enhancing the quality and safety of stored RBCs.
    
		                        		
		                        		
		                        		
		                        	
3.Shenfu Injection Improve Chronic Heart Failure by Regulates Glycolytic Pathway Mediated by HIF-1α/PFKFB3 Pathway
Ji OUYANG ; Kun LIAN ; Xiaoqian LIAO ; Lichong MENG ; Lin LI ; Zhenyu ZHAO ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):136-145
		                        		
		                        			
		                        			ObjectiveThis study aims to explore the mechanism and targets of Shenfu Injection in regulating glycolysis to intervene in myocardial fibrosis in chronic heart failure based on the hypoxia-inducible factor-1α (HIF-1α)/ 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) signaling pathway. MethodsA rat model of chronic heart failure was established by subcutaneous injection of isoproterenol (ISO). After successful modeling, the rats were randomly divided into the Sham group, Model group, Shenfu injection (SFI, 6 mL·kg-1) group, and inhibitor (3PO, 35 mg·kg-1) group, according to a random number table, and they were treated for 15 days. Cardiac function was evaluated by echocardiography, and serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were detected by enzyme-linked immunosorbent assay (ELISA). Fasting body weight and heart weight were measured, and the heart index (HI) was calculated. Pathological changes in myocardial tissue were observed by hematoxylin-eosin (HE) and Masson staining, and the fibrosis rate was calculated. Biochemical assays were used to determine serum levels of glucose (GLU), lactic acid (LA), and pyruvic acid (PA). Western blot was used to analyze the expression of proteins related to the HIF-1α/PFKFB3 signaling pathway (HIF-1α and PFKFB3), glycolysis-related proteins (HK1, HK2, PKM2, and LDHA), and fibrosis-related proteins [transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), and Collagen type Ⅰ α1 (ColⅠA1)]. Real-time PCR was used to detect the mRNA expression of HIF-1α and PFKFB3 in myocardial tissue. ResultsCompared with the Sham group, the Model group showed significantly decreased left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), interventricular septal thickness (IVSd), and interventricular septal strain (IVSs) (P<0.05), while left ventricular internal dimension at end-diastole (LVDd) and end-systole (LVIDs) were increased (P<0.05). Serum NT-proBNP levels were significantly increased (P<0.01), and body weight was decreased. Heart weight was increased, and the HIT index was increased (P<0.05). Myocardial tissue exhibited inflammatory cell infiltration and collagen fiber deposition, and the fibrosis rate was significantly increased (P<0.05). Serum GLU was decreased (P<0.05), while LA and PA levels were increased (P<0.05). Protein expressions of HIF-1α, PFKFB3, HK1, HK2, PKM2, LDHA, TGF-β1, α-SMA, and ColⅠA1, as well as the mRNA expression of HIF-1α and PFKFB3 were increased (P<0.05). Compared with the Model group, both the SFI group and 3PO groups showed significant improvements in LVEF, LVFS, IVSd, and IVSs (P<0.05) and decreases in LVDd, LVIDs, and NT-proBNP levels (P<0.05). Body weight was significantly increased. Heart weight was significantly decreased, and the HIT index was significantly decreased (P<0.05). Inflammatory cell infiltration, collagen fiber deposition, and the fibrosis rate were significantly decreased (P<0.05). Serum GLU levels were significantly increased (P<0.05), while LA and PA levels were decreased (P<0.05). Expressions of glycolysis-related proteins, fibrosis-related proteins, and HIF-1α/PFKFB3 pathway-related proteins and mRNAs were significantly suppressed (P<0.05). ConclusionSFI improves cardiac function in chronic heart failure by downregulating the expression of HIF-1α/PFKFB3 signaling pathway-related proteins, regulating glycolysis, and inhibiting myocardial fibrosis. 
		                        		
		                        		
		                        		
		                        	
4.Cardiomyocyte Apoptosis in Chronic Heart Failure and Traditional Chinese Medicine Intervention
Kun LIAN ; Peiyao LI ; Zhiguang SONG ; Jianhang ZHANG ; Junxian LEI ; Lin LI ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):165-172
		                        		
		                        			
		                        			Chronic heart failure is the terminal stage of various cardiovascular diseases, and cardiomyocyte apoptosis is the turning point of decompensation. Studies have shown that traditional Chinese medicine (TCM) could regulate apoptosis-related signaling pathways and factors and inhibit or up-regulate the expression of apoptosis-related proteins. Thus, TCM can reduce cardiomyocyte apoptosis, protect the myocardial tissue and improve the cardiac function, demonstrating remarkable clinical effects. In recent years, the research on the treatment of chronic heart failure based on the inhibition of cardiomyocyte apoptosis is increasing and becomes the current research hotspot. On the basis of literature review, this paper discovers that TCM regulates apoptosis factors and multiple signaling pathways to inhibit apoptosis and inflammation and delay the progression of chronic heart failure through classical pathways such as the death receptor pathway, the mitochondrial pathway, and the endoplasmic reticulum pathway. At the same time, the studies in this field have the following problems: Repeated studies with shallow, simple, and fragmented contents, treating animal models with TCM prescriptions without syndrome differentiation, treating diseases with drugs at only one concentration which is insufficient to indicate efficacy, and lacking comprehensive, holistic, and systematic studies on the relationships of apoptosis with inflammatory responses, pyroptosis, ferroptosis, and autophagy. In the future, more scientific, reasonable, comprehensive, and feasible experimental schemes should be designed on the basis of comprehensively mastering the research progress in this field, and the communication and cooperation between researchers in different disciplines should be strengthened. The specific pathological mechanism of cardiomyocyte apoptosis in chronic heart failure and the signaling pathways, active components, and action targets of TCM in inhibiting cardiomyocyte apoptosis in chronic heart failure should be elucidated. Such efforts are expected to provide sufficient reference for the clinical treatment of chronic heart failure. 
		                        		
		                        		
		                        		
		                        	
5.Influence of exosomes derived from RBC suspension in different storage durations on the prognosis of traumatic brain injury
Tong LI ; Jingge LIAN ; Mingming ZHAO ; Yujie KONG ; Feng YIN
Chinese Journal of Blood Transfusion 2025;38(8):1016-1022
		                        		
		                        			
		                        			Objective: Traumatic brain injury (TBI) patients often experience massive bleeding and require blood transfusion. However, the storage duration of the transfused blood may affect the prognosis of these patients. This study explored the influence of exosomes derived from fresh and aged blood on the prognosis of rats with TBI, so as to provide theoretical support for the blood transfusion management of TBI patients. Methods: Exosomes were isolated from red blood cell (RBC) suspensions stored for 1 week and 5 weeks using ultracentrifugation method. The size, morphology and surface markers of the exosomes were identified by nanoparticle flow cytometry, transmission electron microscopy and Western blotting, respectively. A rat model of TBI was constructed using a mechanical impactor for brain injury. After the successful establishment of the model, exosomes from RBC suspensions stored for 1 week and 5 weeks were injected into the extracellular space of rat brain cells using a stereotactic syringe. Cerebral edema at day 1, 3, 7 and 14 were recorded through cranial magnetic resonance imaging (MRI) scans. Magnetic tracing technology (the tracer was Gd-DTPA solution) was used to evaluate the drug metabolism level in the extracellular space of brain cells of TBI rats. The cranial magnetic resonance imaging was scanned every 15 or 30 minutes, and the recording lasted for a total of 240 minutes. The magnetic images were imported into the 3D-Slicer software in Dicom data format for analysis. Mass spectrometry technology was used to analyze the differential proteins of exosomes from RBC suspensions stored for 1 week and 5 weeks, and functional prediction was carried out to explore the possible mechanisms by which exosomes affect the prognosis of TBI. Results: After injection of exosomes into TBI rats, the areas of cerebral edema on the day 1, 3, 7, and 14 were all significantly higher in the rats treated with exosomes from 5-week-stored RBC suspensions, with peak cerebral edema occurring at day 3. The diffusion volume of the tracer was significantly higher in TBI rats than in normal rats, which implied there was a disorder in the structure of the traumatic brain tissue in TBI rats. Compared with the rats injected with exosomes from 1-week-stored RBC suspensions, those treated with exosomes from 5-week-stored RBC suspensions showed increased tracer diffusion volume within 120 minutes. Mass spectrometry analysis identified 81 differentially expressed proteins between exosomes from RBC suspensions stored for 5 weeks vs 1 week. Among them, 93.83% (76/81) proteins had increased expression levels. The neurodegeneration-related pathways were among the most enriched pathways for upregulated proteins. Conclusion: The exosomes from aged RBC suspensions can lead to exacerbated cerebral edema, disrupted extracellular space, and suppressed metabolic rate in TBI rats, suggesting that transfusion of aged RBC suspensions may have adverse effects on TBI patients.
		                        		
		                        		
		                        		
		                        	
6.Current research status and application prospects of mesenchymal stem cell-derived exosomes in islet transplantation
Rui LI ; Dianxiang WANG ; Zhaowei LIANG ; Bing HAN ; Hao LIAN
Organ Transplantation 2025;16(1):163-168
		                        		
		                        			
		                        			Type 1 diabetes mellitus is a chronic autoimmune disease caused by the destruction of pancreatic islet β cells. Pancreatic islet transplantation provides a treatment method for patients with type 1 diabetes mellitus to restore endogenous insulin secretion. However, some problems limit the widespread application of islet transplantation, such as the shortage of donors and post-transplantation rejection damage. Mesenchymal stem cell-derived exosome (MSC-Exo) has become a potential tool for islet transplantation therapy due to their immunomodulatory and tissue repair capabilities. MSC-Exo shows great promise for application, because of low immunogenicity, easily being stored and transported, and the potential as drug delivery vehicles. However, challenges such as preparation, purification, standardization and safety verification need to be overcome before converting MSC-Exo into clinical practice. Therefore, this article reviews the application and potential advantages of MSC-Exo in islet transplantation, aiming to providing more effective and safer treatment options for patients with type 1 diabetes mellitus.
		                        		
		                        		
		                        		
		                        	
7.Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice
Nan ZHANG ; Huaiyin LI ; Xiaodi LIAN ; Juanpeng WEI ; Ming GAO
Laboratory Animal and Comparative Medicine 2025;45(1):73-78
		                        		
		                        			
		                        			Objective This study aims to investigate the effects of varying durations of light exposure on body weight and learning and memory abilities of pubertal NIH mice. Methods Forty pubertal NIH mice, evenly split by gender and with similar initial weights, were subjected to a 12 h light-dark cycle for one week. They were then randomly assigned to groups with daily light exposure durations of 0, 6, 12, 18, and 24 hours, with 8 mice in each group. The experimental period lasted for 7 weeks, with the first 5 weeks as the feeding phase under different light exposure conditions, and the last 2 weeks as the behavioral testing phase. Their body weight was monitored, and learning and memory abilities were assessed using the T-maze, object location test, and eight-arm maze tests. Results During the light exposure period, there were no significant differences in body weight among groups (P>0.05). However, the weight gain of mice in the 24 h group was significantly higher than that of the 0 h group and the 6 h group during the second and third weeks of light exposure (P<0.05). After five weeks of light exposure, in the T-maze test, the latency time of the 0 h light exposure group was significantly longer than that of the 12 h group (P<0.01), and the latency time of the 24 h light exposure group was significantly longer than that of the 12 h group (P<0.05). In the object location test, the mice in 12 h group exhibited a higher discrimination index and spent more time observing the new location compared to the other groups, with significant differences in comparison to the 18 h group (P<0.01) and the 24 h group (P<0.05). In the eight-arm maze test, the time to find food, the reference memory error rate, and the working memory error rate in the 12 h group were all lower than those in the 0 h group, with significant differences (P<0.05). Moreover, the working memory error rate in the 24 h group was higher than that in the 12 h group, with significant differences (P<0.05). Conclusion Continuous 24 h light exposure affects body weight gain, while light exposure durations exceeding 18 h or below 6 h per day weaken the learning and memory abilities of NIH mice. 
		                        		
		                        		
		                        		
		                        	
8.Visual analysis of hot spots and trends in the study of ligamentum flavum ossification
Qiang XU ; Jialin QIN ; Zeshuang LIAN ; Aoting WANG ; Ding LI ; Ye WANG ; Junfang WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):628-636
		                        		
		                        			
		                        			BACKGROUND:Ossification of the ligamentum flavum was previously considered to be rare in the population.As research has progressed,its incidence rate is increasing gradually,which has aroused the interest of a large number of researchers. OBJECTIVE:To visualize and analyze the research results on ossification of the ligamentum flavum from the Web of Science Core Collection since 1999 using bibliometric methods,and to review the research history of ossification of the ligamentum flavum,highlighting important literature,summarizing research hotspots,and providing ideas for researchers to find research directions. METHODS:Using the Web of Science Core Collection as the data source,relevant papers on ossification of the ligamentum flavum were searched and screened.VOSviewer 1.6.19 and CiteSpace 6.2.R6 were used to conduct the visual analysis of annual publication volume,research countries,institutions,citations,journals,authors,and keywords. RESULTS AND CONCLUSION:(1)A total of 347 papers were included.Since 1999,the number of published papers has increased in a spiral pattern.China's research started later than Japan's,but the number of publications has come up later,with Peking University being the institution with the most publications,and Prof.Chen Zhongqiang from Peking University being the scholar with the most publications.(2)Five of the 10 most frequently cited publications were related to the surgical treatment of the disease.(3)Excluding keywords directly related to the research topic and synthetically analyzing frequencies and betweenness centralities of key words,terms such as"thoracic myelopathy,""dural ossification,""minimally invasive surgery,"and"ossification of the posterior longitudinal ligament"occupied a central position in this field.(4)Keywords clustering analysis showed that clinical manifestations and surgical treatment of ossification of the ligamentum flavum accounted for a large proportion of study.(5)The timeline and burst analysis of keywords revealed that"minimally invasive surgery"appeared as a keyword around 2015,with the highest burst strength and the latest burst start time,and began to receive extensive attention from researchers in 2019.The burst of the keyword"dural ossification"has not yet ended.(6)Surgical treatment for ossification of the ligamentum flavum has been at the forefront of research.Development and research of minimally invasive surgery and research on dural ossification secondary to ossification of the ligamentum flavum are both current research hotspots and possible future research trends.
		                        		
		                        		
		                        		
		                        	
9.Construction of an artificial intelligence-driven lung cancer database
Libing YANG ; Chao GUO ; Huizhen JIANG ; Lian MA ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):167-174
		                        		
		                        			
		                        			Objective  To develop an artificial intelligence (AI)-driven lung cancer database by structuring and standardizing clinical data, enabling advanced data mining for lung cancer research, and providing high-quality data for real-world studies. Methods  Building on the extensive clinical data resources of the Department of Thoracic Surgery at Peking Union Medical College Hospital, this study utilized machine learning techniques, particularly natural language processing (NLP), to automatically process unstructured data from electronic medical records, examination reports, and pathology reports, converting them into structured formats. Data governance and automated cleaning methods were employed to ensure data integrity and consistency. Results  As of September 2024, the database included comprehensive data from 18 811 patients, encompassing inpatient and outpatient records, examination and pathology reports, physician orders, and follow-up information, creating a well-structured, multi-dimensional dataset with rich variables. The database’s real-time querying and multi-layer filtering functions enabled researchers to efficiently retrieve study data that meet specific criteria, significantly enhancing data processing speed and advancing research progress. In a real-world application exploring the prognosis of non-small cell lung cancer, the database facilitated the rapid analysis of prognostic factors. Research findings indicated that factors such as tumor staging and comorbidities had a significant impact on patient survival rates, further demonstrating the database’s value in clinical big data mining. Conclusion  The AI-driven lung cancer database enhances data management and analysis efficiency, providing strong support for large-scale clinical research, retrospective studies, and disease management. With the ongoing integration of large language models and multi-modal data, the database’s precision and analytical capabilities are expected to improve further, providing stronger support for big data mining and real-world research of lung cancer.
		                        		
		                        		
		                        		
		                        	
10.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
		                        		
		                        			
		                        			Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail