1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
2.Sesquiterpene ZH-13 from Aquilariae Lignum Resinatum Improves Neuroinflammation by Regulating JNK Phosphorylation
Ziyu YIN ; Yun GAO ; Junjiao WANG ; Weigang XUE ; Xueping PANG ; Huiting LIU ; Yunfang ZHAO ; Huixia HUO ; Jun LI ; Jiao ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):139-145
ObjectiveTo study the pharmacological substances and mechanisms through which sesquiterpene ZH-13 from Aquilariae Lignum Resinatum improves neuroinflammation. MethodsBV-2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce neuroinflammation. The cells were divided into the normal group, the model group, and the ZH-13 low- and high-dose treatment groups (10, 20 μmol·L-1). The model group was treated with 1 μmol·L-1 LPS. Cell viability was assessed using the cell proliferation and activity assay (CCK-8 kit). Nitric oxide (NO) release in the cell supernatant was measured using a nitric oxide kit (Griess method). The mRNA expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins was assessed by Western blot. ResultsCompared with the model group, ZH-13 dose-dependently reduced NO release from BV-2 cells under LPS stimulation (P<0.05, P<0.01). In the 20 μmol·L-1 ZH-13 treatment group, the mRNA expression levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced compared to the model group (P<0.05, P<0.01). In both the low- and high-dose ZH-13 groups, the expression of the inflammatory factor TNF-α and the phosphorylation of c-Jun N-terminal kinase (JNK) in the upstream MAPK pathway were significantly reduced (P<0.05). After stimulation with the JNK agonist anisomycin (Ani), both low- and high-dose ZH-13 treatment groups showed reduced phosphorylation of JNK proteins compared to the Ani-treated group (P<0.01). ConclusionThe sesquiterpene compound ZH-13 from Aquilariae Lignum Resinatum significantly ameliorates LPS-induced neuroinflammatory responses in BV-2 cells by inhibiting excessive JNK phosphorylation and reducing TNF-α expression. These findings elucidate the pharmacological substances and mechanisms underlying the sedative and calming effects of Aquilariae Lignum Resinatum.
3.Clinical diagnostic value of 18 MHz color Doppler ultrasonography in epiretinal membrane
Jun ZHAO ; Ya'nan LI ; Hongqiang JIA ; Min LIU ; Junping BAI
International Eye Science 2025;25(1):144-147
AIM: To explore the diagnostic value of 18 MHz color Doppler ultrasonography for epiretinal membrane.METHODS: A total of 44 cases(80 eyes)of patients with proposed diagnosis of cataract and vitreous opacity by fundus examination in our hospital between January 2020 and January 2022 were collected, and the affected eyes were examined by optical coherence tomography(OCT)and 18 MHz color Doppler ultrasonography, and the differences in the diagnostic sensitivity, specificity, and accuracy were compared between 18 MHz color Doppler ultrasonography and OCT for the diagnosis of epiretinal membrane.RESULTS: In the 80 eyes detected by 18 MHz color Doppler ultrasonography, 62 had epiretinal membrane and 18 had non epiretinal membrane. Totally 54 eyes were confirmed to have epiretinal membrane by OCT, 13 eyes were not diagnosed with epiretinal membrane, 5 eyes were missed diagnosis, and 8 eyes were misdiagnosed. The diagnostic consistency between 18 MHz color Doppler ultrasonography and OCT was high(Kappa=0.892, P<0.05); the 18 MHz color Doppler ultrasonography detection sensitivity of epiretinal membrane was 92%, specificity was 62%, missed diagnosis rate was 8%, misdiagnosis rate was 38%, and accuracy was 84%; compared with OCT detection, 18 MHz color Doppler ultrasonography detected a lower specificity, correct rate, positive prediction accuracy, negative prediction accuracy, and higher misdiagnosis rate(all P<0.05), and the difference in diagnostic sensitivity compared with leakage rate was not statistically significant(all P>0.05).CONCLUSION: 18 MHz color Doppler ultrasonography has some value in identifying epiretinal membrane lesions and is consistent with OCT testing.
4.Association between dietary components and gut microbiota: a Mendelian randomization study
CHEN Haimiao ; MA Yan ; LIU Mingqi ; MA Shanshan ; LI Jun ; XU Laichao
Journal of Preventive Medicine 2025;37(1):73-76,81
Objective:
To explore the causal association between dietary components (carbohydrate, fat, protein, and sugar) and 119 genera of known gut microbiota using Mendelian randomization (MR) methods.
Methods:
Genome-wide association study (GWAS) data for dietary components were collected from the DietGen, while GWAS data for gut microbiota were collected from the MiBioGen. Single nucleotide polymorphism (SNP) loci associated with the four dietary components were used as instrumental variables, and 119 known gut microbiota genera were used as the outcomes. MR analysis was performed using inverse variance weighted (IVW) method. Heterogeneity was evaluated using Cochran's Q test, horizontal pleiotropy and exclude outliers were tested using MR-Egger regression and MR-PRESSO test. Common genetic pleiotropic genes between dietary components and gut microbiota were identified by MAGMA and PLACO analyses.
Results:
The MR analysis revealed causal associations between carbohydrates and 4 gut microbiota genera, fats and 14 genera, proteins and 14 genera, and sugars and 11 genera (all P<0.05). The MR-Egger regression analysis showed no horizontal pleiotropy among the selected SNPs, and the MR-PRESSO test did not identify any outliers (all P>0.05). The MAGMA and PLACO analyses revealed that 74.42% (32/43) of the causal associations had pleiotropic genes, with 1 to 10 pleiotropic genes identified. Multiple causal association groups shared the same pleiotropic genes.
Conclusion
There are potential genetic and causal associations between dietary components and gut microbiota.
5.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
6.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
7.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases.
8.Connotation and Prevention Strategies of Traditional Chinese Medicine for Panvascular Diseases
Jie WANG ; Jun LI ; Yan DONG ; Cong CHEN ; Yongmei LIU ; Chao LIU ; Lanchun LIU ; Xuan SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):1-14
Panvascular disease, with vascular diseases as the common pathological feature, is mainly manifested as atherosclerosis. Panvascular disease mainly affects the important organs of the heart, brain, kidney, and limbs. It is one of the leading causes of death for Chinese residents at present. Previously, due to the narrow branches of disciplines, too much attention was paid to local lesions, resulting in the neglect of panvascular disease as a systemic one. The fact that panvascular disease has overall pathology and comprehensive and individualized treatment strategies, makes the disease highly compatible with the principles of holism concept and syndrome differentiation and treatment in traditional Chinese medicine (TCM). It is believed that blood stasis is the core pathogenesis of atherosclerosis and is involved in the whole process of atherosclerosis. The theories of ''blood vessel'', ''meridians'', ''visceral manifestation'', and ''organs-meridians'' in TCM are helpful to comprehensively understand the complexity of panvascular diseases. Moreover, those theories can provide systematic treatment strategies. The TCM syndromes of panvascular diseases evolve from ''phlegm, stasis, stagnation, and deficiency''. Panvascular arteriosclerosis is related to the syndrome of ''stasis and phlegm'', and the treatment mainly promotes blood circulation and removes phlegm. There are different specific drugs and mechanisms of action for coronary atherosclerosis, cerebral atherosclerosis, and renal artery atherosclerotic stenosis. Panvascular venous lesions are related to the syndrome of ''deficiency and stasis'' in TCM, and the TCM treatment mainly invigorates Qi and promotes blood circulation, which can inhibit venous thrombosis, improve venous ulcers, and resist venous endothelial damage. Panvascular microcirculatory lesions are inseparable from the ''stagnation and stasis'' in TCM, and the treatment mainly promotes Qi and dredges collaterals, which has a good effect on coronary microvascular lesions, diabetic microvascular lesions, pulmonary microvascular lesions, and pancreatic microvascular lesions. Panvascular lymphatic lesions are related to the syndrome of ''water and stasis'' in TCM. The treatment method focuses on promoting blood circulation and water excretion, which can promote lymphangiogenesis and enhance lymphatic reflux. In addition, the combination of TCM and modern technology, especially the application of artificial intelligence, can improve the efficiency of early identification and personalized treatment, resulting in early screening and comprehensive management of panvascular diseases. Therefore, TCM will play a vital role in the prevention and treatment of panvascular diseases.
9.Study on surface microcirculation sensitization of acupuncture points related to cold coagulation and stasis syndrome in primary dysmenorrhea
Xuxin LI ; Xuesong WANG ; Miao LIN ; Mingjian ZHANG ; Yuanbo GAO ; Xifen ZHANG ; Hao CHEN ; Haiping LI ; Xiaojun ZHENG ; Xisheng FAN ; Jun LIU ; Juncha ZHANG ; Yanfen SHE
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):253-269
Objective:
To assess the dynamic changes of microcirculation at acupoints in patients with primary dysmenorrhea and cold congelation and blood stasis syndrome using laser speckle blood flow imaging.
Methods:
Patients with primary dysmenorrhea and cold coagulation and blood stasis syndrome (primary dysmenorrhea group, n=53) and healthy female college students(control group, n=57) who met the inclusion and exclusion criteria from October 2020 to July 2022 were enrolled at Hebei University of Chinese Medicine. On the premenstrual and first day of menstruation, a laser speckle blood flow imaging system was used to measure the microcirculation blood flow perfusion on the surface of acupoints related to the conception, thoroughfare, and governor vessels, and stomach, spleen, and bladder meridians in the abdomen and lumbosacral regions. The dynamic changes in microcirculation were calculated based on the difference in average blood flow perfusion at each acupoint before and after menstruation. Receiver operating curve (ROC) analysis was used to analyze the diagnostic efficacy of dynamic changes in microcirculation on the surface of each acupoint. The microcirculation sensitization rate of acupoints was calculated.
Results:
Compared with the control group, the dynamic changes in microcirculation at the following acupoints in the primary dysmenorrhea group were increased (P<0.05): conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]); left thoroughfare vessel (left Huangshu[KI16], left Zhongzhu[KI15], left Siman[KI14], left Qixue[KI13], left Dahe[KI12], left Henggu[KI11]); left stomach meridian (left Tianshu[ST25], left Wailing[ST26], left Qichong[ST30]); left spleen meridian (left Daheng[SP15], left Fujie[SP14]); right thoroughfare vessel (right Huangshu[KI16], right Zhongzhu[KI15], right Siman[KI14], right Qixue[KI13], right Dahe[KI12], right Henggu[KI11]); right stomach meridian (right Wailing[ST26], right Daju[ST27], right Shuidao[ST28], right Guilai[ST29], right Qichong[ST30]); and right spleen meridian (right Fujie[SP14]). The area under the ROC curve of conception vessel (Yinjiao[CV7], Qihai[CV6], Shimen[CV5], Guanyuan[CV4]), thoroughfare vessel (right Siman[KI14], left Huangshu[KI16], right Qixue[KI13], right Zhongzhu[KI15], right Dahe[KI12], left Zhongzhu[KI15], left Siman[KI14], right Huangshu[KI16], left Qixue[KI13], right Henggu[KI11], left Henggu[KI11], left Dahe[KI12]); stomach meridian (left Tianshu[ST25], right Guilai[ST29], left Wailing[ST26], right Shuidao[ST28], right Daju[ST27], right Wailing[ST26], right Qichong[ST30], left Qichong[ST30]), and spleen meridian (left Daheng[SP15], left Fujie[SP14], right Fujie[SP14]) was 0.610-0.682 (P<0.05). Compared with the control group, the sensitization rate of some acupoints in the primary dysmenorrhea group increased (P<0.05).
Conclusion
With the onset of menstruation, the blood flow perfusion of some acupoints in the abdomen (thoroughfare, and conception vessels, and stomach and spleen meridians) of patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome increased, and the status of acupoints changed from a resting state to an active state. These acupoints are sensitive in patients with primary dysmenorrhea and cold blood coagulation and blood stasis syndrome and have a certain diagnostic efficacy, providing a basis for further analyzing the efficacy and mechanism of acupuncture and moxibustion to treat primary dysmenorrhea with cold blood coagulation and blood stasis syndrome.
10.Association among childhood obesity, type 2 diabetes mellitus and coronary artery heart disease: a Mendelian randomization study
CHEN Haimiao ; MA Yan ; LIU Mingqi ; MA Shanshan ; LI Jun ; FANG Yirong
Journal of Preventive Medicine 2025;37(3):307-311
Objective:
To investigate the association between childhood obesity and type 2 diabetes mellitus (T2DM) as well as coronary artery heart disease (CHD).
Methods:
Genome-wide association study (GWAS) data for childhood obesity were collected from the ECG consortium, encompassing information on children aged 2 to 18 years, including 18 613 cases and 12 696 controls. GWAS data for T2DM were collected from the DIAGRAM consortium, including 242 283 cases and 1 569 734 controls. GWAS data for CHD were collected from the CARDIoGRAMplusC4D consortium, including 10 801 cases and 137 371 controls. Pleiotropic genes associated with both T2DM and CHD were analyzed using the MAGMA, PLACO and conditional false discovery rate (cFDR) methods. Mendelian randomization (MR) analysis was performed using inverse variance weighted (IVW) method, exploring the causal relationships among childhood obesity, T2DM and CHD. Heterogeneity was evaluated using Cochran's Q test, horizontal pleiotropy and exclude outliers were tested using MR-Egger regression and MR-PRESSO test. The mediating variables among the three diseases were investigated by using a mediation analysis.
Results:
The results of MAGMA, PLACO and cFDR analyses identified 80 pleiotropic genes associated with both T2DM and CHD, primarily distributed on chromosomes 3, 17 and 19. The MR analysis revealed that childhood obesity increased the risk of T2DM (OR=1.151, 95%CI: 1.033-1.283) and CHD (OR=1.158, 95%CI: 1.068-1.255), T2DM increased the risk of CHD (OR=1.182, 95%CI: 1.139-1.227), and CHD increased the risk of T2DM (OR=1.124, 95%CI: 1.055-1.198). The MR-Egger regression analysis showed no horizontal pleiotropy, and the MR-PRESSO test did not identify any outliers (all P>0.05). Mediation analysis indicated that childhood obesity directly increased the risk of CHD (effect value=0.096, 95%CI: 0.012-0.180) and indirectly increased the risk of CHD through T2DM (effect value=0.023, 95%CI: 0.005-0.041), with the mediation effect accounting for 15.65% of the total effect.
Conclusions
There are potential causal associations between childhood obesity and T2DM as well as CHD, with a bidirectional causal relationship between T2DM and CHD. T2DM also plays a mediating role in the association between childhood obesity and CHD.


Result Analysis
Print
Save
E-mail