1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
2.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
5.Identification of Lonicera japonica TPS gene family and expression analysis under aphid damage.
Gang WANG ; Yuan CUI ; Qi-Dong LI ; Lu-Yao HUANG ; Zhen-Hua LIU ; Jia LI
China Journal of Chinese Materia Medica 2025;50(8):2116-2129
This study explores the basic characteristics and potential functions of the terpene synthase(TPS) gene family members in Lonicera japonica. The L. japonica TPS(LjTPS) gene family was identified and functionally analyzed using bioinformatics methods. The results showed that a total of 70 members of the LjTPS gene family were identified in L. japonica, with protein lengths ranging from 130 to 1 437 amino acids. Most of these proteins were hydrophilic, and they were unevenly distributed across nine chromosomes. Phylogenetic analysis showed that the LjTPS gene family members were divided into six subfamilies, mainly consisting of members from the TPS-a, TPS-b, and TPS-e subfamilies. Promoter cis-acting element analysis showed that LjTPS members contained a large number of stress-responsive cis-acting elements. Aphid inoculation experiments showed that key enzyme genes in the MVA pathway for terpenoid backbone synthesis in L. japonica, such as HMGS, HMGR, MK, MPD, and the key enzyme gene in the DXP pathway, DXS, exhibited an initial increase followed by a decrease under aphid stress. The qRT-PCR analysis showed that the expression levels of the α-farnesene synthase genes LjTPS34 and LjTPS39 were down-regulated, while the expression levels of(E)-β-caryophyllene synthase genes LjTPS15 and LjTPS17 were up-regulated 12 h before aphid feeding, then began to decline. Farnesyl pyrophosphate synthase(FPS), which interacted with these genes, also displayed a pattern of increasing followed by decreasing expression. The expression of linalool synthase genes LjTPS12 and LjTPS33 was significantly up-regulated after 72 h of aphid feeding(P<0.000 1), reaching 24.39 and 22.64 times the initial expression, respectively. This pattern was in close alignment with the trend of linalool content in L. japonica. This study provides a theoretical foundation for future research on the interaction between L. japonica and pests, as well as on the functional roles of the LjTPS gene family.
Animals
;
Aphids/physiology*
;
Alkyl and Aryl Transferases/chemistry*
;
Lonicera/parasitology*
;
Phylogeny
;
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Multigene Family
;
Terpenes/metabolism*
6.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
7.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
8.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
9.Identification of characteristics, supply channels, and imperial court processing of Arecae Semen in the Qing court.
Feng-Yuan LI ; Hua-Sheng PENG ; Xue-Ling GUAN ; Yan JIN ; Ting YAO ; Yuan YUAN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2924-2930
Qing court records show that Arecae Semen was extensively applied. The royal medical records of the Qing Dynasty document nine types of Arecae Semen, with the Palace Museum preserving seven kinds, totaling twelve cultural relics. Historical documents and physical artifacts corroborate each other, providing evidence for the study of the supply channels and court processing of Arecae Semen in the Qing court. According to relevant Qing court archival records, the sources of Arecae Semen used in the imperial court were diverse, including tributes from foreign countries such as Vietnam and Gurkha, annual tributes from local governments in Guangdong, gifts from close aides, and commodities purchased by the Imperial Household Department from civilian shops. The imperial physicians of the Qing court placed great emphasis on the specifications of Arecae Semen slices and were extremely meticulous about their processing. The variety of Arecae Semen slices used in the Qing palace exceeded those recorded in the botanical texts of the era. Compared with the commonly used processing methods for Arecae Semen in the Qing Dynasty, the imperial physicians adjusted the properties and efficacy of the herbs through different processing techniques, based on the patient's condition, constitution, and other factors, in order to meet the clinical treatment needs of the court. The slicing of Arecae Semen in the Qing court required strict control of thickness, with an average thickness of 0.44 mm, which is significantly thinner than the Arecae Semen slices found in today's markets. The texture was softer, making them easier to chew and absorb. Both the Qing court Arecae Semen slices and the Muxiang Binglang Pills focused on the use of authentic medicinal materials, ensuring the quality of the medicine and enhancing the efficacy of Arecae Semen through meticulous selection and preparation.
China
;
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, 19th Century
;
History, Ancient
;
History, 17th Century
;
History, 18th Century
10.Tracing origin of "Qinggong Maidong" production area based on analysis of literature and historical materials and identification of characteristics of Qinggong medicinal materials and cultural relics.
Ao-Yu REN ; Ting YAO ; Feng-Yuan LI ; Hua-Sheng PENG
China Journal of Chinese Materia Medica 2025;50(11):2931-2937
Maidong products are categorized into "Hang Maidong" and "Chuan Maidong". Since the Ming and Qing Dynasties, "Hang Maidong" has been regarded as having superior quality, but currently, it remains in name only in the market. This article reviewed historical materia medica and local chronicles from the Ming and Qing Dynasties and analyzed the historical evolution of Maidong production areas. The history of Maidong production in Zhejiang can be traced back to the Song Dynasty, and cultivation had already developed by at least the Ming Dynasty. During the Ming and Qing Dynasties, it was consistently used as a tribute. Ming Dynasty chronicles record "Chuan Maidong", which had already been cultivated on a large scale by the Qing Dynasty. "Hang Maidong" and "Chuan Maidong" share the same origin, with the former identifiable by the "gourd waist" shape of its tuberous root. Based on this, it can be inferred that the "Maimendong" herb illustrated in the Origins of Materia Medica(Ben Cao Yuan Shi) and the Maidong stored in the Qing Palace Imperial Pharmacy were both "Hang Maidong". The protection and development of the authentic "Hang Maidong" medicinal herb are urgently needed.
China
;
Drugs, Chinese Herbal/history*
;
History, 17th Century
;
History, Ancient
;
Medicine, Chinese Traditional/history*
;
History, Medieval
;
History, 16th Century
;
History, 18th Century
;
History, 15th Century
;
Plants, Medicinal/chemistry*
;
History, 19th Century
;
History, 20th Century
;
Humans
;
Materia Medica/history*
;
History, 21st Century

Result Analysis
Print
Save
E-mail