1.Long-term outcomes of totally endoscopic minimally invasive mitral valve repair for Barlow’s disease: A retrospective cohort study
Lishan ZHONG ; Yanying HUANG ; Zhenzhong WANG ; Shuo XIAO ; Yuxin LI ; Dou FANG ; Qiuji WANG ; Chaolong ZHANG ; Huanlei HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):114-120
Objective To examine the safety, efficacy and durability of totally endoscopic minimally invasive (TEMI) mitral valve repair in Barlow’s disease (BD). Methods A retrospective study was performed on patients who underwent mitral valve repair for BD from January 2010 to June 2021 in the Guangdong Provincial People’s Hospital. The patients were divided into a MS group and a TEMI group according to the surgery approaches. A comparison of the clinical data between the two groups was conducted. Results A total of 196 patients were enrolled, including 133 males and 63 females aged (43.8±14.9) years. There were 103 patients in the MS group and 93 patients in the TEMI group. No hospital death was observed. There was a higher percentage of artificial chordae implantation in the TEMI group compared to the MS group (P=0.020), but there was no statistical difference between the two groups in the other repair techniques (P>0.05). Although the total operation time between the two groups was not statistically different (P=0.265), the TEMI group had longer cardiopulmonary bypass time (P<0.001) and aortic clamp time (P<0.001), and shorter mechanical ventilation time (P<0.001) and postoperative hospitalization time (P<0.001). No statistical difference between the two groups in the adverse perioperative complications (P>0.05). The follow-up rate was 94.2% (180/191) with a mean time of 0.2-12.4 (4.0±2.4) years. Two patients in the MS group died with non-cardiac reasons during the follow-up period. The 3-year, 5-year and 10-year overall survival rates of all patients were 100.0%, 99.2%, 99.2%, respectively. Compared with the MS group, there was no statistical difference in the survival rate, recurrence rate of mitral regurgitation, reoperation rate of mitral valve or adverse cardiovascular and cerebrovascular events in the TEMI group (P>0.05). Conclusion TEMI approach is a safe, feasible and effective approach for BD with a satisfying long-term efficacy.
2.POEMS syndrome with hepatosplenomegaly as the initial manifestation: A report of two cases
Ye ZHANG ; Wenqing WANG ; Jing LI ; Qianrong BAI ; Jiayu LI ; Yan CHENG ; Miaomiao FANG ; Nana GAO ; Changxing HUANG
Journal of Clinical Hepatology 2025;41(1):127-132
POEMS syndrome is a rare condition associated with plasma cell disorders, and it often involves multiple systems and has diverse clinical manifestations. This article reports two cases of POEMS syndrome with hepatosplenomegaly as the initial manifestation. During the course of the disease, the patients presented with lower limb weakness, hepatosplenomegaly, lymph node enlargement, ascites, hypothyroidism, positive M protein, and skin hyperpigmentation, and 18F-FDG PET-CT imaging revealed bone lesions mainly characterized by osteolytic changes and plasma cell tumors. There was an increase in the serum level of vascular endothelial growth factor. The patients were finally diagnosed with POEMS syndrome, and the symptoms were relieved after immunomodulatory treatment.
3.Distribution characteristics, source apportionment, and health risk assessment of metals and metalloids in PM2.5 in a southern city in 2019
Yaxin QU ; Suli HUANG ; Chao WANG ; Jie JIANG ; Jiajia JI ; Daokui FANG ; Shaohua XIE ; Xiaoheng LI ; Ning LIU
Journal of Environmental and Occupational Medicine 2025;42(2):196-204
Background Metals and metalloids in fine particulate matter (PM2.5) may cause damage to the respiratory and circulatory systems of the human body, and long-term exposure is prone to causing chronic poisoning, cancer, and other adverse effects. Objective To assess the distribution characteristics of metals and metalloids in outdoor PM2.5 in a southern city of China, conduct source apportionment, and evaluate the associated health risks, thereby providing theoretical support for further pollution control measures. Methods PM2.5 samples were collected in districts A, B, and C of a southern China city, and the concentrations of 17 metals and metalloids were detected by inductively coupled plasma-mass spectrometry (ICP-MS). Pollution sources were assessed through enrichment factor and principal components analysis, and the main pollution sources were quantified using absolute principal component scores-multivariate linear regression (APCS-MLR). Health risks were evaluated based on the Technical guide for environmental health risk assessment of chemical exposure (WS/T777—2021). Results The ambient air PM2.5 concentrations in the city were higher in winter and spring, and lower in summer and autumn. The annual average concentrations of ambient PM2.5 in districts A, B, and C were 36.7, 31.9, and 24.4 μg·m−3, respectively. The ambient PM2.5 levels in districts B and C were below the second-grade limit set by the Ambient air quality standards (GB 3095—2012). The enrichment factors of cadmium (Cd), aluminum (Al), and antimony (Sb) were greater than 10, those of copper (Cu), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), and molybdenum (Mo) fell between 1 and 10, and those of manganese (Mn), vanadium (V), chromium (Cr), cobalt (Co), barium (Ba), beryllium (Be), and uranium (U) were below or equal to 1. The comprehensive evaluation of source analysis showed that the main pollution sources in districts A and C and the whole city were coal-burning. In district B, the main pollution source was also coal combustion, followed by industrial process sources and dust sources. The carcinogenic risks of As and Cr were between 1×10−6 and 1×10−4. However, the hazard quotients for 15 metals and metalloids in terms of non-carcinogenic risk were below 1. Conclusion Cr and As in the atmospheric PM2.5 of the city present a certain risk of cancer and should be paid attention to. In addition, preventive control measures should be taken against relevant pollution sources such as industrial emission, dust, and coal burning.
4.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
5.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
6.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
7.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
8.Understanding the complexity of tumor-associated macrophages: Druggable and therapeutic insights.
An-Qi LI ; Fang HUANG ; Sulaiya TALAITI ; Xiao YANG ; Huichang BI ; Jian-Hong FANG
Acta Pharmaceutica Sinica B 2025;15(9):4456-4475
Macrophages are immune cells capable of exerting both pro-tumor and anti-tumor effects. Tumor-associated macrophages (TAMs) comprise a heterogeneous group of macrophages originating from monocytes and resident tissue macrophages. Their phenotypes and functions vary depending on factors such as tumor type, location, and stage. TAMs can promote tumor growth, angiogenesis, metastasis, immunosuppression, and drug resistance, or they can facilitate antigen presentation and immune activation, thereby contributing to tumor elimination. As such, TAMs are potential targets for cancer therapy, and various pharmacological strategies and clinic-approved drugs have been suggested to modulate their activity, recruitment, and depletion. However, the complexity and diversity of TAMs present significant challenges to understanding their roles and designing effective drug interventions. This review summarizes the current knowledge of TAMs, and drug development for TAMs as anti-tumor therapy targets, emphasizing the importance of single-cell omics technologies for characterizing TAM heterogeneity and identifying therapeutic opportunities. Additionally, it presents the latest clinical trials focused on TAM-targeted therapies and drugs. Collectively, this review discusses the therapeutic opportunities and challenges of TAM-targeted drug therapies and offers future perspectives and directions for advancing our understanding and manipulation of TAMs in drug development.
9.Brain endothelial HIF-1α exacerbates diabetes-associated cognitive impairment by accelerating glycolysis-driven lactate production.
Jicong CHEN ; Ruohui LIN ; Cuihua JIANG ; Fang CHEN ; Wei LI ; Lei WANG ; Ke PAN ; Jian ZHANG ; Zhiqi YIN ; Yaping HUANG
Acta Pharmaceutica Sinica B 2025;15(11):5772-5788
Type 2 diabetes (T2D) is an independent risk factor for cognitive impairment. The dysregulation of hypoxia inducible factor (HIF) signaling in T2D patients results in impaired adaptive responses to hypoxia, thereby accelerating the progression of complications. However, limited knowledge is available regarding its precise function in diabetes-associated cognitive impairment (DACI). Here, elevated HIF-1α levels were observed in brain endothelial cells (ECs) of db/db mice. Functionally, brain ECs-specific knockdown of H if1 a significantly ameliorated T2D-induced memory loss and neuronal damage. Glycolysis in brain ECs was inhibited in this process, as indicated by RNA-seq, leading to decreased hippocampal lactate production through reduced LDHA expression. Notably, T2D patients showed increased cerebrospinal fluid lactate levels, which were strongly associated with their cognitive dysfunction. Intrahippocampal injection of lactate accelerated cognitive dysfunction and impaired adult hippocampal neurogenesis (AHN) in db/db mice. Conversely, reducing hippocampal lactate levels through the intrahippocampal injection of oxamate delayed the onset of memory deficits. Furthermore, asiatic acid was discovered to protect db/db mice from cognitive impairment by decreasing brain endothelial HIF-1α expression and subsequently reducing hippocampal lactate-induced AHN damage. Overall, this study elucidates the inhibiting role played by endothelial HIF-1α-driven lactate in AHN and highlights a potential tactic of targeting HIF-1α in brain ECs for treating cognitive impairment.
10.Quercetin mediates the therapeutic effect of Centella asiatica on psoriasis by regulating STAT3 phosphorylation to inhibit the IL-23/IL-17A axis.
Qing LIU ; Jing LIU ; Yihang ZHENG ; Jin LEI ; Jianhua HUANG ; Siyu LIU ; Fang LIU ; Qunlong PENG ; Yuanfang ZHANG ; Junjie WANG ; Yujuan LI
Journal of Southern Medical University 2025;45(1):90-99
OBJECTIVES:
To explore the active components that mediate the therapeutic effect of Centella asiatica on psoriasis and their therapeutic mechanisms.
METHODS:
TCMSP, TCMIP, PharmMapper, Swiss Target Prediction, GeneCards, OMIM and TTD databases were searched for the compounds in Centella asiatica and their targets and the disease targets of psoriasis. A drug-active component-target network and the protein-protein interaction network were constructed, and DAVID database was used for pathway enrichment analysis. In a RAW264.7 macrophage model of LPS-induced inflammation, the anti-inflammatory effect of 7.5, 15, 30, and 60 μmol/L quercetin, asiaticoside, and asiatic acid, which were identified as the main active components in Centella asiatica, were tested by measuring cellular production of NO, TNF‑α and IL-6 using Griess method and ELISA and by detecting mRNA expressions of IL-23, IL-17A, TNF-α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727) with RT-qPCR and Western blotting.
RESULTS:
A total of 139 targets of Centella asiatica and 4604 targets of psoriasis were obtained, and among them CASP3, EGFR, PTGS2, and ESR1 were identified as the core targets. KEGG analysis suggested that quercetin, asiaticoside, and asiatic acid in Centella asiatica were involved in cancer and IL-17 and MAPK signaling pathways. In the RAW264.7 macrophage model of inflammation, treatment with quercetin significantly reduced cellular production of NO, TNF‑α and IL-6, and lowered mRNA expressions of IL-23, IL-17A, TNF‑α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727).
CONCLUSIONS
Quercetin, asiaticoside and asiatic acid are the main active components in Centella asiatica to mediate the therapeutic effect against psoriasis, and quercetin in particular is capable of suppressing cellular production of NO, TNF‑α and IL-6 and regulating the IL-23/IL-17A inflammatory axis by mediating STAT3 phosphorylation to inhibit inflammatory response.
Quercetin/pharmacology*
;
Psoriasis/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice
;
Animals
;
Centella/chemistry*
;
Triterpenes/pharmacology*
;
Phosphorylation
;
Interleukin-17/metabolism*
;
Interleukin-23/metabolism*
;
RAW 264.7 Cells
;
Pentacyclic Triterpenes/pharmacology*
;
Macrophages/drug effects*
;
Signal Transduction
;
Plant Extracts

Result Analysis
Print
Save
E-mail