1.The role of human umbilical cord-derived mesenchymal stem cells transplantation in alleviating radiation-induced ovarian injury
Mei ZHANG ; Chao YANG ; Bo CHENG ; Jianan WANG ; Yinghao MA ; Zheng ZHANG ; Qingxiang HOU ; Li MA
Chinese Journal of Radiological Health 2025;34(4):584-589
Objective Using female mice to investigate the reparative effects of human umbilical cord mesenchymal stem cells on radiation-induced ovarian injury. Methods Mice were randomly divided into three groups: a blank control group, a radiation model group, and a cell therapy group. Mice in the radiation model group and the cell therapy group received a single whole-body irradiation of 5 Gy X-rays. Within 2 hours post-irradiation, mice in the cell therapy group underwent ovarian transplantation of UC-MSCs. On days 1, 7, and 14 post-irradiation, body weight was measured, ovarian index was calculated, histopathological changes in ovarian tissue were examined, serum levels of reproductive hormones (follicle-stimulating hormone, anti-Müllerian hormone, and estradiol) were determined, and the colonization of implanted UC-MSCs in the mice was observed. Results On days 1, 7, and 14 post-irradiation, both the cell therapy group and the radiation model group showed decreased body weight compared to the blank control group (P < 0.05). On day 1 post-irradiation compared to day 1 pre-irradiation within the same group, the radiation model group exhibited a greater decrease in body weight than the cell therapy group (P < 0.05). On days 1, 7, and 14 post-irradiation, the ovarian index decreased in both the radiation model group and the cell therapy group compared to the blank control group (P < 0.05). On days 7 and 14 post-irradiation, the ovarian index in the cell therapy group was significantly higher than that in the radiation model group (P < 0.05). Ovarian tissue in the radiation model group exhibited atrophy and a reduction in the number of follicles at all stages. In contrast, follicles in the cell therapy group were large and abundant. On days 1, 7, and 14 post-irradiation, serum follicle-stimulating hormone levels in the cell therapy group were lower than those in the radiation model group, while anti-Müllerian hormone and estradiol levels were higher than those in the radiation model group (P < 0.01). In vivo fluorescence imaging demonstrated that UC-MSCs successfully colonized the ovarian tissue on days 1, 7, and 14 after transplantation. Conclusion UC-MSCs exert a repair effect on radiation-induced ovarian injury in mice.
2.Study on Mechanism of Xiaojin Pills in Treatment of Breast Cancer Based on Network Pharmacology and Experimental Verification
Delian NIU ; Dongyin LIAN ; Qin HU ; Lihua SUN ; Ying CHEN ; Hongping HOU ; Guangping ZHANG ; Jianrong LI ; Zuguang YE ; Bo PENG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):41-49
Objective To explore the molecular mechanism of Xiaojin Pills in the treatment of breast cancer using an integrated network pharmacology and experimental verification.Methods The chemical components and potential targets of Xiaojin Pills were obtained from TCMSP,TCM-ID,ETCM and SwissTargetPrediction databases.Breast cancer related targets were collected from GeneCards,OMIM and KEGG databases.The overlapped targets were imported into STRING database to analysis a protein-protein interaction(PPI).The key targets of PPI networks were screened based on node topology parameter values through Cytoscape 3.8.0.DAVID database was used to analyze the GO and KEGG pathway enrichment to build drug-chemical components-key targets-signaling pathway network.The breast cancer cell lines MDA-MB-231 and SK-BR-3 were used to study the effects of Xiaojin Pills extract on cell apoptosis,migration and invasion,and to verify the key pathway obtained by enrichment analysis.Results Totally 181 chemical components in Xiaojin Pills were obtained,including quercetin,myricetin,pinocembrin and β-sitosterol.615 potential targets were identified for the anti-breast cancer effects of Xiaojin Pills.After overlapping,170 key targets against breast cancer were identified based on the topological analysis,which included SRC,ERK1/2,AKT1,EGFR,etc.KEGG analysis enriched pathways including pathways in cancer,MAPK signaling pathway,endocrine resistance,PI3K-AKT signaling pathway,EGFR tyrosine kinase inhibitor resistance,apoptosis,and HIF-1 signaling pathway,which may play important roles in the therapeutic effects of Xiaojin Pills against breast cancer.GO enrichment was involved in protein phosphorylation,inflammatory response,negative regulation of apoptosis,and positive regulation of ERK1 and ERK2 cascades.Cell experiments showed that Xiaojin Pills further induced mitochondria-dependent apoptosis by inhibiting the activation of MAPK and PI3K-AKT pathways.At the same time,the expressions of ZO-1 and β-catenin increased,and the epithelial-mesenchymal transformation process was reversed to inhibit the metastasis of breast cancer cells.Conclusion The key targets and signaling pathways of Xiaojin Pills in the treatment of breast cancer are studied through network pharmacology combined with in vitro experiments,which provided a basis for further study of its pharmacodynamic material basis,mechanism of action and clinical application.
3.Research status of AQP5 regulation of programmed cell death in chronic obstructive pulmonary disease
Cheng-Cai YUN ; Li-Ying ZHANG ; Hong-Dou HOU ; Huan-Huan ZHANG ; Zhang-Bo SONG ; Wen-Xing YONG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2134-2138
Aquaporin 5(AQP5),as the main water transport protein in the body,can regulate lung diseases by regulating airway mucus secretion,pulmonary inflammation,and lung function.Programmed cell death(PCD)plays a crucial role in chronic obstructive pulmonary disease(COPD).AQP5 may affect the development of COPD by regulating PCDs.This article reviews the molecular regulatory mechanism of AQP5 on apoptosis,autophagy,iron death and pyroptosis in PCDs in recent years,and further discusses its effect on COPD in order to provide theoretical support for clinical prevention and treatment of COPD.
4.Research status on the role of NLRP3 inflammasome in tumor micro-environment on breast cancer metastasis
Lin-Ye HUA ; Hong-Shan LUO ; Xiu-Lian LIN ; Li-Mei LIN ; Bo-Hou XIA ; Ya-Mei LI
The Chinese Journal of Clinical Pharmacology 2024;40(14):2148-2152
The expression level of NOD-like receptors(NLRP3)inflammasome is significantly elevated in breast cancer tissues,and a high level of NLRP3 inflammasomes is closely associated with breast cancer metastasis.Activation of NLRP3 inflammasome can induce the release of inflammatory factors into the tumor microenvironment(TME).These inflammatory factors,by signaling to cancer cells,reshape the TME to promote tumor growth and invasion,ultimately facilitating the process of epithelial-mesenchymal transition.This equips cancer cells with the ability to establish distant metastases and increase the formation of metastatic lesions.This review addresses the current research status and prospects of NLRP3 inflammasomes in the breast cancer TME and their role in breast cancer metastasis.The goal is to provide new insights for the study of breast cancer metastasis mechanisms and treatment strategies.
5.Ganmai Dazao Tang Treats Breast Cancer-related Depression via MAPK/NF-κB Signling Pathway
Jieyuan LIU ; Yanli WANG ; Delian NIU ; Mengting LI ; Lijinchuan DONG ; Xinmin LIU ; Hongping HOU ; Guangping ZHANG ; Ying CHEN ; Bo PENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):170-178
ObjectiveTo investigate the therapeutic effect of Ganmai Dazao Tang on breast cancer-related depression and explore the mechanism of the decoction in regulating immune inflammation and neurotransmitters via the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathway. MethodBALB/c mice were randomized into control, model, fluoxetine (5 mg·kg-1·d-1), and low- and high-dose (crude drug 20 and 40 g·kg-1, respectively) Ganmai Dazao Tang groups (n=10). The mouse model of 4T1 orthotopic transplantation-induced breast cancer-related depression-like behavior was established. The depression-like behavior of mice was assessed by the tail suspension test and the forced swimming test. RT-qPCR was employed to determine the mRNA levels of interleukin (IL)-17A, forkhead box P3 (FoxP3),IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in the cerebral cortex. Flow cytometry was employed to measure the proportions of immune cell subsets in the spleen and thymus. HPLC-MS/MS was employed to measure neurotransmitter levels in the cerebral cortex. Western blotting was employed to detect the activation of the MAPK/NF-κB pathway. ResultCompared with the model group, administration of Ganmai Dazao Tang at a dose of 40 g crude drug·kg-1 continuously for 4 weeks shortened the immobility time of modeled mice in the tail suspension and forced swimming tests (P<0.05), down-regulated the mRNA levels of IL-1β, IL-17A, and TNF-α (P<0.05), increased the proportions of T cells, CD4+ T cells, B cells, helper T 17 (Th17) cells, and regulatory T (Treg) cells, and reduced the proportion of CD8+ T cells (P<0.05). Furthermore, it lowered the levels of 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine (Kyn), decreased the kynurenine/tryptophan (Kyn/Trp) ratio (P<0.05), increased the content of 5-hydroxytryptamine (5-HT), and down-regulated the protein levels of phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated p38 MAPK, and phosphorylated nuclear factor-κB p65 (P<0.05). ConclusionGanmai Dazao Tang can down-regulate the expression of inflammatory cytokines such as IL-1β, IL-17A, and TNF-α, restore 5-HT metabolism and Kyn/Trp balance, increase the 5-HT content, and reduce the activation of p38 MAPK, ERK, and the MAPK-mediated NF-κB signaling pathway to reduce neuroinflammation in the treatment of cancer-related depression.
6.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
7.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
8.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional
9.Logic-gated drug delivery systems in cancer immunotherapy
Lin SHUTONG ; Xie YAXIONG ; Hou BO ; Li MIN ; Yu HAIJUN
Chinese Journal of Clinical Oncology 2024;51(17):888-895
Immunotherapy has become a mainstream treatment for cancer.However,the immunosuppressive tumor microenvironment hinders the antigen extraction and presentation by immune cells,resulting in insufficient infiltration and activation of cytotoxic T cells.Moreover,patient variability and the systemic distribution of immunotherapeutic agents can cause toxic side effects,such as excessive activ-ation or immunosuppression.The extratumoral toxicity and challenges in penetrating the tumor microenvironment hinder the effectiveness of immunotherapy on solid tumors.Recently,researchers have developed immunotherapy platforms using polymers,nucleic acids,and cells capable of logical processing based on signal inputs.These platforms can target tumors and perform logical processing based on various in-puts from the tumor microenvironment or external signals.This review briefly introduces logic-gated platforms designed using synthetic nanocarriers,nucleic acids,and chimeric antigen receptor T-cells(CAR-T)and discusses research progress in immunotherapy,aiming to provide foresight by comparing the advantages and disadvantages of each platform.
10.TCM Master Zhang Zhen's Experience in the Treatment of Thyroid Nodules Based on the Theory of"One Body with Two Wings,Regulating Qi Movement"
Heguo YAN ; Bo YANG ; Ye ZHOU ; Changxing HUANG ; Jianting HOU ; Chaolan YIN ; Jun LI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(10):172-175
This article introduced TCM master Zhang Zhen's experience of using theory of"one body with two wings,regulating qi movement"in the treatment of thyroid nodules.The onset of thyroid nodules is due to liver depression and qi stagnation,and the booster of the onset is spleen and kidney dysfunction.The main pathogenesis is liver depression and qi stagnation,spleen deficiency and phlegm coagulation,kidney deficiency and blood stasis.The disease is located in the liver,spleen,and kidney.The general principle for treating thyroid nodules is to regulate the liver to regulate"the body",while the key points for treating thyroid nodules are to supplement the spleen and kidneys to supplement"the two wings".The combination of promoting blood circulation and dispersing nodules is the target for treating thyroid nodules.The clinical treatment of thyroid nodules with Shutiao Xiaohe Decoction has a significant therapeutic effect.

Result Analysis
Print
Save
E-mail