1.Comparison of Wild and Cultivated Bupleurum scorzonerifolium Based on Traditional Quality Evaluation
Changsheng YUAN ; Feng ZHOU ; Xingyu LIU ; Yu SHI ; Yihan WANG ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Huaizhong GAO ; Yanmeng LIU ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):203-214
ObjectiveTo characterize the quality differences among different germplasm and introduced varieties of Bupleurum scorzonerifolium roots(BSR), and explore the underlying molecular mechanisms, providing a basis for high-quality production and quality control. MethodsWild BSR from Yulin(YLW) served as the quality reference, we conducted comparative analysis among YLW, locally domesticated wild germplasm in Yulin(YLC3), Daqing germplasm introduced and cultivated in Yulin(YLDQC3), and locally cultivated germplasm in Daqing(DQC3). A combination of traditional pharmacognostic methods and modern multi-omics analyses was employed, including macroscopic traits(appearance, odor), microscopic features(proportions of cork, phloem, xylem), cell wall component contents(hemicellulose, cellulose, lignin), carbohydrate contents(starch, water-soluble polysaccharides), marker compound contents(ethanol-soluble extracts, total saponins, liposoluble extracts, and saikosaponins A, B2, C, D), metabolomics, and transcriptomics, in order to systematically characterize quality differences and investigate molecular mechanisms among these samples. ResultsMacroscopically, Yulin-produced BSR(YLW, YLC3, YLDQC3) exhibited significantly greater weight, length, and upper and middle diameters than Daqing-produced BSR(DQC3). Odor-wise, YLW and YLC3 had a a fragrance taste, YLDQC3 had a rancid oil odor, and DQC3 had a sweet and fragrant taste. Microscopically, Yulin germplasm(YLW, YLC3) and Daqing germplasm(YLDQC3, DQC3) shared similar structural features, respectively. However, Yulin germplasm showed significantly higher proportions of cork and phloem, as well as stronger xylem vessel staining intensity compared to Daqing germplasm. Regarding various component contents, Yulin germplasm contained significantly higher levels of ethanol-soluble extracts, total saponins, and saikosaponins A, B2, C, D, while Daqing germplasm had significantly higher levels of hemicellulose, starch, and liposoluble extracts. After introduction to Yulin, the Daqing germplasm(YLDQC3) showed increased starch, water-soluble polysaccharides and liposoluble extracts contents, decreased cell wall component content, but no significant difference in other component contents. Metabolomics revealed that saponins and terpenes accumulated significantly in Yulin germplasm, while alcohols and aldehydes accumulated predominantly in Daqing germplasm. Transcriptomics indicated similar gene expression patterns within the same germplasm but specificity between different germplasms. Integrative metabolomic-transcriptomic analysis identified 145 potential key genes associated with the saikosaponin biosynthesis pathway, including one acetyl-coenzyme A(CoA) acetyltransferase gene(ACAT), one 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(HMGS), two hydroxymethylglutaryl-CoA(HMG-CoA) reductase genes(HMG), one phosphomevalonate kinase gene(PMK), one 1-deoxy-D-xylose-5-phosphate synthase gene(CLA), one hydroxymethylbuten-1-aldol synthase gene(HDR), two farnesyl pyrophosphate synthase genes(FPPS), one squalene synthase gene(SQS), one β-amyrin synthase gene(BAS), 102 cytochrome P450(CYP450) gene family members, and 32 uridine diphosphate-glucuronosyltransferase(UGT) gene family members. ConclusionAmong the three cultivated types, YLC3 most closely resembles YLW in appearance, microscopic features, contents of major bioactive constituents, metabolomic and transcriptomic profiles. Yulin germplasm exhibits superior saponin synthesis capability compared to Daqing germplasm, and Yulin region is more suitable for the growth of B. scorzonerifolium. Based on these findings, it is recommended that artificial cultivation in northern Shaanxi and similar regions utilize the local Yulin germplasm source cultivated for at least three years.
2.Comparison of Wild and Cultivated Polygalae Radix Based on Traditional Quality Evaluation
Yihan WANG ; Yanmeng LIU ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):215-224
ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted the quality differences between wild Polygalae Radix(WPR) and cultivated Polygalae Radix(CPR) from the aspects of character, microscope and chemical composition by modern scientific and technological means, providing a basis for high-quality production and quality control. MethodsCPR and local WPR in Yulin city, Shaanxi province from 1 to 6 years were collected, and a systematic comparative analysis was conducted using traditional pharmacognosy research methods combined with modern multi-omics analysis techniques, including character traits(length, weight, diameter), cross-sectional microscopic features(proportions of cork, phloem, xylem, etc), cell wall component content(hemicellulose, cellulose, lignin), extracts content(water-soluble extract and alcohol-soluble extract), carbohydrate content(starch, water-soluble polysaccharides), contents of total flavonoids, total saponins and specific marker compounds(3,6′-disinapoyl sucrose, polygalaxanthone Ⅲ, tenuifoliside A, tenuifoliside C, sibiricose A5 and A6) and other indexes. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to conduct comparative analysis of secondary metabolites in WPR and CPR, and multivariate statistical analysis such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were combined to screen the key differential components of them. ResultsIn terms of appearance, there were significant differences between WPR and CPR. The characteristics of WPR conformed to the "thick wrinkles on the epidermis" recorded in ancient books, featuring a wrinkled surface and grayish-brown appearance. However, CPR had a finer texture and a yellowish white appearance, with weight, length, and diameter increasing with longer cultivation periods. In terms of microscopy, WPR exhibited a thick cork layer with fissures in the phloem, whereas CPR had a thinner cork layer with uniformly arranged cork cells. Younger PR specimens showed numerous phloem fissures in cross-sections, while older specimens display progressively denser arrangements of phloem parenchyma cells. In terms of the contents of various major components, the contents of water-soluble extract, starch and total saponins in WPR were inversely proportional to the root diameter, while the contents of water-soluble extract, water-soluble polysaccharides and total saponins in CPR decreased with the increase of planting years. The content of xanthones in WPR was significantly higher than that of CPR, while the contents of other major components showed no significant change pattern. Among the six indicator components, the average content of sibiricose A5 in WPR was significantly higher than that of CPR, followed by slightly higher content of tenuifoliside A. In CPR, the relative content of 3,6′-disinapoyl sucrose and tenuifoliside A was the highest. The former showed an increase in volatility with increasing cultivation years, while the latter showed a decrease in volatility. The results of differential compound analysis based on UPLC-Q-TOF-MS showed that there were significant differences in metabolites between WPR and CPR samples. Among them, the seven compounds with the largest differences among WPR samples of different thicknesses were polygalasaponins, and for CPR with different planting years, the main differential compounds were oligosaccharide esters. ConclusionThere are differences between WPR and CPR in character, microscopic structure and chemical composition, and some components are inversely proportional with the increase of diameter and cultivation duration due to the distribution characteristics. However, the longer the cultivation years of PR, the closer it is to the "thick wrinkles on the epidermis" of WPR, which has been respected by generations. It is suggested that this traditional character combined with modern component contents should be used as the index of artificial cultivation and quality control of PR.
3.Comparison of Wild and Cultivated Gardeniae Fructus Based on Traditional Quality Evaluation
Yuanjun SHANG ; Bo GENG ; Xin CHEN ; Qi WANG ; Guohua ZHENG ; Chun LI ; Zhilai ZHAN ; Junjie HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):225-234
ObjectiveBased on traditional quality evaluation of Gardeniae Fructus(GF) recorded in historical materia medica, this study systematically compared the quality differences between wild and cultivated GF from morphological characteristics, microscopic features, and contents of primary and secondary metabolites. MethodsVernier calipers and analytical balances were used to measure the length, diameter and individual fruit weight of wild and cultivated GF, and the aspect ratio was calculated. A colorimeter was used to determine the chromaticity value of wild and cultivated GF, and the paraffin sections of them were prepared by safranin-fast green staining and examined under an optical microscope to observe their microstructure. Subsequently, the contents of water-soluble and alcohol-soluble extracts of wild and cultivated GF were detected by hot immersion method under the general rule 2201 in volume Ⅳ of the 2020 edition of the Pharmacopoeia of the People's Republic of China, the starch content was measured by anthrone colorimetric method, the content of total polysaccharides was determined by phenol-sulfuric acid colorimetric method, the sucrose content was determined by high performance liquid chromatography coupled with evaporative light scattering detection(HPLC-ELSD), and the contents of representative components in them were measured by ultra-performance liquid chromatography(UPLC). Finally, correlation analysis was conducted between quality traits and phenotypic traits, combined with multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), key differential components between wild and cultivated GF were screened. ResultsIn terms of traits, the wild GF fruits were smaller, exhibiting reddish yellow or brownish red hues with significant variation between batches. While the cultivated GF fruits are larger, displaying deeper orange-red or brownish red. The diameter and individual fruit weight of cultivated GF were significantly greater than those of wild GF, while the blue-yellow value(b*) of wild GF was significantly higher than that of cultivated GF. In the microstructure, the mesocarp of wild GF contained numerous scattered calcium oxalate cluster crystals, while the endocarp contained stone cell class round, polygonal or tangential prolongation, undeveloped seeds were visible within the fruit. In contrast, the mesocarp of cultivated GF contained few calcium oxalate cluster crystals, or some batches exhibited extremely numerous cluster crystals. The stone cells in the endocarp were predominantly round-like, with the innermost layer arranged in a grid pattern. Seeds were basically mature, and only a few immature seeds existed in some batches. Regarding primary metabolite content, wild GF exhibited significantly higher total polysaccharide level than cultivated GF(P<0.01). In category-specific component content, wild GF exhibited significantly higher levels of total flavonoids and total polyphenols compared to cultivated GF(P<0.01). Analysis of 12 secondary metabolites revealed that wild GF exhibited significantly higher levels of Shanzhiside, deacetyl asperulosidic acid methyl ester, gardenoside and chlorogenic acid compared to cultivated GF(P<0.01). Conversely, the contents of genipin 1-gentiobioside, geniposide and genipin were significantly lower in wild GF(P<0.01). ConclusionThere are significant differences between wild and cultivated GF in terms of traits, microstructure, and contents of primary and secondary metabolites. At present, the quality evaluation system of cultivated GF remains incomplete, and this study provides a reference for guiding the production of high-quality GF medicinal materials.
4.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
5.Herbal Textual Research on Malvae Semen in Famous Classical Formulas
Dongxue CHEN ; Yibo LIU ; Yangyang YU ; Guoshuai LYU ; Huili WU ; Xinle HAN ; Yue TAN ; Minhui LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):252-264
The medicinal use of Malvae Semen has a long history. In this paper, by consulting the ancient materia medica, prescription, agronomy, literature and other aspects of the classics, the name, origin, evolution of scientific name, quality, harvesting and processing, functions and indications and others of Malvae Semen were systematically sorted out and verified, so as to provide a basis for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shennong Bencaojing began to use Dongkuizi as the correct name, which was used in the past dynasties, and there were also aliases such as Kuicaizi, Huacai, and Kuizi. Through the original research, it can be seen that Kuicai is the mainstream original plant of Malvae Semen, that is, Malva verticillata var. crispa, the Alcea rosea and M. cathayensis are also used. In modern times, the seeds of Abutilon theophrasti have been passed off as Malvae Semen, while the seeds of M. verticillata var. crispa have rarely been used in medicine. And Abutili Semen has been another medicinal material with different efficacy since the collection of Newly Revised Materia Medica in the Tang dynasty. Since the Ming and Qing dynasties, the cultivation of Kuicai has been decreasing, while A. theophrasti is more common and easy to obtain, and Abutili Semen and Malvae Semen are similar in morphology and confused, which should be corrected. In addition, Malvae Fructus is a Mongolian customary medicinal herb, which is different from the traditional use of seeds in traditional Chinese medicine. Kuicai, as an important vegetable in history, was widely cultivated and gradually shrunk after the Song dynasty, it is now mainly produced in southern provinces. The quality evaluation of Malvae Semen is better for those with dry bodies, full grain, grayish brown color, no mud, and no impurities. The harvesting is generally in the autumn and winter. After drying, it is seeded, sieved peel and impurities, mashed, or slightly stir-fried to yellow-white color with gentle fire. It is sweet, cold and slippery in nature and taste, with the main effects of laxation, diuresis, lactation and elimination of swelling. The efficacy of Abutili Semen is clearing heat and removing toxicity, promoting diuresis and removing nebula, the efficacy is quite different from that of Malvae Semen. Based on the results of textual research, it is suggested that M. verticillata var. crispa should be used as the medicinal source of Malvae Semen in the development of famous classical formulas, the corresponding processing methods should be selected according to the requirements of drug processing in the formulas, while the raw products are recommended to be used if the processing is not specified.
6.Conceptual clarification of the disease and syndrome concept in the Chapter of Simultaneous Treatment of Pulse and Syndrome of Water Qi Disease of Synopsis of Golden Chamber
Chunhua JIA ; Min LAI ; Zhan LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):149-153
The Simultaneous Treatment of Pulse and Syndrome of Water Qi Disease chapter of Synopsis of Golden Chamber is regarded as one of its most challenging sections. Although nominally focused on water qi disease, this chapter also discusses yellowish sweating disease, qifen disease, and other diseases. This multiplicity of topics led to the misconception that all these diseases are water qi diseases, complicating the diagnosis and treatment strategies. By distinguishing water qi as both a pathogenic factor and a disease entity, this paper redefines the concept, linking it to the abnormal accumulation of liquid and gaseous water in the body, akin to the disrupted water cycle of the nature. It demonstrates that ZHANG Zhongjing recognizes the primary syndrome, pathogenesis, and therapeutic principles of water qi disease from the generation, aggregation, and dissipation of vaporous water. The study further differentiates water qi disease, yellowish sweating disease, and qifen disease as distinct entities. An analysis of their etiology, pathogenesis, syndromes, and treatment approaches establishes their independence while exploring their interrelations. Moreover, the relationships among the qifen, xuefen, and water phase diseases are clarified. ZHANG Zhongjing′s discussion in the Simultaneous Treatment of Pulse and Syndrome of Water Qi Disease identifies the three diseases around the three " disease of water phase." The clarification of the concepts and relationships of the diseases in the Simultaneous Treatment of Pulse and Syndrome of Water Qi Disease will help to systematically and thoroughly elucidate ZHANG Zhongjing′s principles and thoughts on identifying and treating water qi disease.
7.Herbal Textual Research on Picrorhizae Rhizoma in Famous Classical Formulas
Feng ZHOU ; Yihan WANG ; Yanmeng LIU ; Xiaoqin ZHAO ; Kaizhi WU ; Cheng FENG ; Wenyue LI ; Wei ZHANG ; Wentao FANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):228-239
This article systematically analyzes the historical evolution of the name, origin, quality evaluation, harvesting, processing and other aspects of Picrorhizae Rhizoma by referring to the medical books, prescription books, and other documents of the past dynasties, combined with relevant modern research materials, in order to provide a basis for the development and utilization of famous classical formulas containing this medicinal herb. The research results indicate that Picrorhizae Rhizoma was first recorded in New Revised Materia Medica from the Tang dynasty. Throughout history, Huhuanglian has been used as its official name, and there are also aliases such as Gehu Luze, Jiahuanglian and Hulian. The main source of past dynasties is the the rhizomes of Picrorhiza kurrooa and P. scrophulariiflora. In ancient times, Picrorhizae Rhizoma was mainly imported by foreign traders via Guangzhou and other regions, and also produced in China, mainly in Xizang. In ancient times, it was harvested and dried in early August of the lunar calendar, while in modern times, it is mostly harvested from July to September, with the best quality being those with thick and crispy rhizomes without impurities, and bitter taste. Throughout history, Picrorhizae Rhizoma was collected, washed, sliced, and dried before being used as a raw material for medicine, it has a bitter and cold taste, mainly used to treat bone steaming, hot flashes, infantile chancre fever, and dysentery. There is no significant difference in taste and efficacy between ancient and modern times. Based on the research results, it is recommended that the rhizomes of P. scrophulariiflora in the 2020 edition of Chinese Pharmacopoeia, or the rhizomes of P. kurrooa, can be used in famous classical formulas containing this medicinal herb, which can be processed according to the processing requirements marked by the original formula. For those without clear processing requirements, the dried raw products are used as medicine.
8.A questionnaire survey and analysis on the current situation of forensic ethics practice and educational needs
Wenjie LUO ; Tiantian PAN ; Shiyue LI ; Mengjun ZHAN ; Lirong QIU ; Yuchi ZHOU ; Xin CHEN ; Fei FAN ; Zhenhua DENG
Chinese Medical Ethics 2025;38(3):378-384
ObjectiveTo explore the current situation of forensic ethics practice and education by designing a questionnaire on forensic ethics, with a view to exploring the path of forensic ethics education construction. MethodsA total of 667 valid questionnaires were collected using the online survey method, basically covering various regions across the country and all sub-specialties of forensic medicine. Descriptive analysis was used to analyze the relevant data. ResultsMost practitioners had relevant ethical reflections in the process of forensic practice. 69.12% of the respondents indicated that they had studied the relevant rules, but approximately half stated that there were no corresponding ethical norms or standard operating manuals. The specific behaviors violating ethics in different units were diverse. 23.04% of the respondents reported that they had encountered unethical behaviors, but only 4.9% of them reported such violations. In terms of forensic ethics education, 87.75% of the respondents believed that there were issues with the current model of forensic ethics education. Meanwhile, the respondents showed a high degree of recognition for receiving forensic ethics education, with 84.15% of respondents expressing willingness to participate in relevant courses. More than half of respondents were willing to participate in forensic ethics education during undergraduate studies, new employee training, and regular post-employment training. ConclusionCurrently, there is a problem of ethical neglect in forensic work in China. Combining ethics courses with professional courses at the practitioner training stage and providing regular training at the practice stage are effective measures to popularize forensic ethics knowledge, enhance ethical awareness, and improve the quality of practice.
9.Herbal Textual Research on Euphorbiae Pekinensis Radix and Knoxiae Radix in Famous Classical Formulas
Xiaoxuan CUI ; Kaizhi WU ; Wuwei MENG ; Yapeng WANG ; Wenyue LI ; Cheng FENG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):282-294
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, processing and other aspects of Euphorbiae Pekinensis Radix(EPR) by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, so as to provide a basis for the development and utilization of famous classical formulas containing this herbal medicine. According to research, EPR was first recorded in the Shennong Bencaojing in the name of Daji, and it is the correct name of the herbal medicine in all dynasties, there are also other aliases such as Qiongju, Hongya Daji, and Xiamaxian. The dried roots of Euphorbia pekinensis from Euphorbiaceae was the mainstream of the past dynasties. Before the Ming dynasty, the above ground parts of E. pekinensis were used as Zeqi in herbal works. However, since LI Shizhen in the Ming dynasty proposed that the origin of Zeqi should be E. helioscopia, the aerial part of EPR is no longer used as medicine. Since modern times, the roots of Knoxia valerianoides has been used as EPR, and has become the mainstream of commodities, which should be corrected. Throughout history, it has been recorded that the main producing areas were Jiangsu, Anhui, Zhejiang, Shanxi and other regions, while modern botanical survey have shown that EPR is a widespread species distributed throughout the country. In ancient times, the harvesting time of EPR was mostly the twelfth lunar month, while in modern time, it is more common to harvest in autumn and winter. The main processing methods of EPR in ancient times were vinegar processing, wine processing, and stir frying, while in modern times, it is uniformly vinegar processing. In the medicinal properties and clinical aspects, the records are basically consistent throughout history, mainly characterized by bitter taste, cold and toxic nature. Its main efficacy is expelling water retention and reducing swelling. Based on the textual research, it is suggested to choose the dried roots of E. pekinensis when famous classical formulas containing EPR, processing method can be based on the original specified prescription requirements, if the processing method is not clear, it is recommended to use vinegar-processed products as medicine.
10.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.


Result Analysis
Print
Save
E-mail