1.Advantages of modified ligation method for spinal cord injury modeling
Daohui LI ; Xiaoshuang XU ; Zhengtao LI ; Xinpeng TIAN ; Hangchuan BI ; Yuan LIU ; Yongwen DAI ; Lingqiang CHEN
Chinese Journal of Tissue Engineering Research 2025;29(2):379-384
BACKGROUND:Currently,different methods of model establishment have been derived from different injury modes of spinal cord injury.Traditional physical injury modeling methods have their own advantages and disadvantages,and there is a lack of more effective and stable animal models of spinal cord injury. OBJECTIVE:To establish a reproducible,controllable,trauma-free,low-mortality,more stable,widely applicable,and short-term postoperative care rat model of spinal cord injury. METHODS:Forty Sprague-Dawley rats with similar body mass and ages were randomly divided into a control group and an improved group,with 20 rats in each group.Animal models of spinal cord injury in the control group were constructed using a clip model method,while the improved group used a modified ligation method based on the compression method to make the spinal cord injury models using suture ligation based on fenestration.Postoperative comparisons were made between the two groups,assessing urination behavior,hematuria,pyuria(infection rate),mortality,scoliosis rate and Basso-Beattie-Bresnahan locomotor rating scale scores at 1,3,5,and 7 days after modeling. RESULTS AND CONCLUSION:Compared with the conventional modeling method,the modified ligation method based on the compression method resulted in faster recovery of urination behavior,lower hematuria rate,lower infection rate,lower mortality rate,lower scoliosis rate,and more concentrated and stable Basso-Beattie-Bresnahan scores(all below 2 points within 1 week).This proves that the modified ligation method based on compression is more suitable for the establishment of spinal cord injury models in rats.
2.Evaluation of Anti-osteoporosis Activity and Hepatotoxicity of Xianling Gubao Based on Zebrafish Model
Qiuman LI ; Yue QIAN ; Zixuan ZHU ; Yuan SONG ; Qian DENG ; Shengyun DAI ; Chongjun ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):87-94
ObjectiveTo investigate the association and translational mechanism between the hepatotoxicity of Xianling Gubao (XLGB) and its treatment of osteoporosis based on a zebrafish model. MethodsZebrafish were randomly selected four days after fertilization (4 dpf) and exposed to different concentrations of XLGB (0.7,0.35 mg·L-1) for 96 h. At the endpoint of the exposure, the mortality rates of zebrafish in the treatment groups of different concentrations were counted, and the "dose-toxicity" curves were plotted. The 10% sublethal concentration (LC10) was calculated. The liver area, acridine orange staining, and pathological tissue sections of transgenic zebrafish [CZ16 (gz15Tg.Tg (fabp 10a: ds Red; ela31: EGFP)] were used as indicators to confirm the hepatic damage caused by the sublethal concentration of XLGB. By using the prednisolone (PNSL)-induced osteoporosis model of zebrafish, the anti-osteoporosis activity of XLGB was evaluated by using the area of skull stained by alizarin red and the cumulative optical density value as indicators. Then, the toxicity difference of XLGB on the liver of zebrafish in healthy and osteoporotic states was compared, and the mechanism of the translational action of the toxicity of XLGB was predicted based on network pharmacology and real-time polymerase chain reaction(Real-time PCR). ResultsThe LC10 of XLGB on zebrafish (8 dpf) was 0.7 mg·L-1. Compared with the blank group, the sublethal concentration (LC10=0.7 mg·L-1, 1/2 LC10=0.35 mg·L-1) of XLGB induced an increase in the number of apoptosis of hepatocytes in a dose-dependent manner, and the tissue arrangement of the liver was disordered and loose. The vacuoles were obvious, and the fluorescence area of the liver was significantly reduced (P<0.01). Compared with the blank group, the mineralized area and cumulative optical density value of zebrafish skull in the PNSL model group were significantly reduced (P<0.01), and those in the 0.7,0.35 mg·L-1 XLGB treatment group were significantly increased compared with the model group (P<0.01). Most importantly, 0.7 mg·L-1 XLGB had no significant effect on the liver of zebrafish in the osteoporosis disease model compared with the blank group. The results of network pharmacology and real-time PCR experiments showed that the toxic transformation of XLGB might be related to the differences in the expression levels of key targets, such as tumor protein 53 (TP53), cysteine aspartic acid specific protease-3(Caspase-3), interleukin(IL)-6, and alkaline phosphatase(ALP) in different organismal states. ConclusionUnder certain conditions, XLGB has hepatotoxicity in normal zebrafish, but under osteoporotic conditions, XLGB not only exerts significant anti-osteoporosis activity but also alleviates hepatotoxicity significantly, which provides a reference for the safe clinical use of XLGB and real evidence for the theories of traditional Chinese medicine of attacking poison with poison and of treating disease with corresponding drugs without damage to the body.
3.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
4.Intestinal metabolites in colitis-associated carcinogenesis: Building a bridge between host and microbiome.
Yating FAN ; Yang LI ; Xiangshuai GU ; Na CHEN ; Ye CHEN ; Chao FANG ; Ziqiang WANG ; Yuan YIN ; Hongxin DENG ; Lei DAI
Chinese Medical Journal 2025;138(16):1961-1972
Microbial-derived metabolites are important mediators of host-microbial interactions. In recent years, the role of intestinal microbial metabolites in colorectal cancer has attracted considerable attention. These metabolites, which can be derived from bacterial metabolism of dietary substrates, modification of host molecules such as bile acids, or directly from bacteria, strongly influence the progression of colitis-associated cancer (CAC) by regulating inflammation and immune response. Here, we review how microbiome metabolites short-chain fatty acids (SCFAs), secondary bile acids, polyamines, microbial tryptophan metabolites, and polyphenols are involved in the tumorigenesis and development of CAC through inflammation and immunity. Given the heated debate on the metabolites of microbiota in maintaining gut homeostasis, serving as tumor molecular markers, and affecting the efficacy of immune checkpoint inhibitors in recent years, strategies for the prevention and treatment of CAC by targeting intestinal microbial metabolites are also discussed in this review.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Animals
;
Carcinogenesis/metabolism*
;
Colitis-Associated Neoplasms/microbiology*
;
Fatty Acids, Volatile/metabolism*
;
Bile Acids and Salts/metabolism*
;
Colitis/microbiology*
5.Novel autosomal dominant syndromic hearing loss caused by COL4A2 -related basement membrane dysfunction of cochlear capillaries and microcirculation disturbance.
Jinyuan YANG ; Ying MA ; Xue GAO ; Shiwei QIU ; Xiaoge LI ; Weihao ZHAO ; Yijin CHEN ; Guojie DONG ; Rongfeng LIN ; Gege WEI ; Huiyi NIE ; Haifeng FENG ; Xiaoning GU ; Bo GAO ; Pu DAI ; Yongyi YUAN
Chinese Medical Journal 2025;138(15):1888-1890
6.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
7.Application of 3D-printed auxiliary guides in adolescent scoliosis surgery.
Dong HOU ; Jian-Tao WEN ; Chen ZHANG ; Jin HUANG ; Chang-Quan DAI ; Kai LI ; Han LENG ; Jing ZHANG ; Shao-Bo YANG ; Xiao-Juan CUI ; Juan WANG ; Xiao-Yun YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1119-1125
OBJECTIVE:
To investigate the accuracy and safety of pedicle screw placement using 3D-printed auxiliary guides in scoliosis correction surgery for adolescents.
METHODS:
A retrospective analysis was conducted on the clinical data of 51 patients who underwent posterior scoliosis correction surgery from January 2020 to March 2023. Among them, there were 35 cases of adolescent idiopathic scoliosis and 16 cases of congenital scoliosis. The patients were divided into two groups based on the auxiliary tool used:the 3D-printed auxiliary guide screw placement group (3D printing group) and the free-hand screw placement group (free-hand group, without auxiliary tools). The 3D printing group included 32 patients (12 males and 20 females) with an average age of (12.59±2.60) years;the free-hand group included 19 patients (7 males and 12 females) with an average age of (14.58±3.53) years. The two groups were compared in terms of screw placement accuracy and safety, spinal correction rate, intraoperative blood loss, number of intraoperative fluoroscopies, operation time, hospital stay, and preoperative and last follow-up scores of the Scoliosis Research Society-22 (SRS-22) questionnaire.
RESULTS:
A total of 707 pedicle screws were placed in the two groups, with 441 screws in the 3D printing group and 266 screws in the free-hand group. All patients in both groups successfully completed the surgery. There was a statistically significant difference in operation time between the two groups (P<0.05). The screw placement accuracy rate of the 3D printing group was 95.46% (421/441), among which the Grade A placement rate was 89.34% (394/441);the screw placement accuracy rate of the free-hand group was 86.47% (230/266), with a Grade A placement rate of 73.31% (195/266). There were statistically significant differences in the accuracy of Grade A, B, and C screw placements between the two groups (P<0.05), while no statistically significant differences were observed in intraoperative blood loss, number of fluoroscopies, correction rate, or hospital stay (P>0.05). In the SRS-22 questionnaire scores, the scores of functional status and activity ability, self-image, mental status, and pain of patients in each group at the last follow-up were significantly improved compared with those before surgery (P<0.05), but there were no statistically significant differences in all scores between the two groups (P>0.05).
CONCLUSION
In scoliosis correction surgery, compared with traditional free-hand screw placement, the use of 3D-printed auxiliary guides for screw placement significantly improves the accuracy and safety of screw placement and shortens the operation time.
Humans
;
Male
;
Scoliosis/surgery*
;
Female
;
Adolescent
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Pedicle Screws
;
Child
8.Perioperative safety assessment and complications follow-up of simultaneous bilateral cochlear implantation in young infants.
Xiaoge LI ; Pu DAI ; Yongyi YUAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(5):413-424
Objective:To evaluate the perioperative safety and long-term complications of simultaneous bilateral cochlear implantation(BCI) in young infants, providing reference data for clinical BCI in young children. Methods:Seventy-four infants aged 6-23 months with congenital severe to profound sensorineural hearing loss who were candidates for cochlear implantation at the Department of Otolaryngology, Chinese PLA General Hospital between August 2018 and August 2019 were consecutively enrolled. Parents made the decision to implant either unilaterally or bilaterally. Participants were divided into unilateral cochlear implantation(UCI) group(before and after 12 months of age) and simultaneous BCI group(before and after 12 months of age). Safety indicators, including perioperative risk variables, complications, and other postoperative adverse events were monitored, with complications followed up for 5-6 years. Comparisons were made between the BCI and UCI, as well as between implantation before and after 12 months of age regarding perioperative safety and long-term complications. Results:A total of 40 BCI patients(23 before 12 months, 17 after 12 months) and 34 UCI patients(20 before 12 months, 14 after 12 months) were included in the study. Regarding perioperative risk variables, the BCI group showed significantly longer anesthesia duration, operative time, and greater blood loss compared to the UCI group, though less than twice that of the UCI group; no anesthetic complications occurred in either group; and there was no significant difference in postoperative hospital stay between the groups. Regarding surgical complications during the 5-year follow-up period, the BCI group experienced 7 complications(2 major, 5 minor), while the UCI group had 7 complications(1 major, 6 minor), with no statistical differences between groups. Regarding other postoperative adverse events, the BCI group demonstrated significantly higher total adverse event rates than the UCI group(80.0% vs 38.2%), with higher rates of moderate to severe anemia(60.0% vs 20.6%) and lower mean hemoglobin levels[(92.35±12.14) g/L vs(102.39±13.09) g/L]. No significant differences were found in postoperative fever rates(50.0% vs 52.9%) or C-reactive protein levels between groups. Within the BCI group, patients implanted before 12 months indicated notably higher rates of total adverse events(91.3% vs 64.7%), high fever(26.1% vs 0), and moderate to severe anemia(78.3% vs 35.3%) compared to those implanted after 12 months. Conclusion:Simultaneous BCI in young children under 2 years of age demonstrates controllable overall risks. Compared to UCI, while it shows no increase in anesthetic or surgical complications, it presents higher perioperative risks and adverse event rates, especially in patients implanted before 12 months of age, warranting special attention from medical staff.
Humans
;
Cochlear Implantation/methods*
;
Infant
;
Postoperative Complications
;
Hearing Loss, Sensorineural/surgery*
;
Follow-Up Studies
;
Male
;
Perioperative Period
;
Female
;
Cochlear Implants
9.Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway.
An-Na XIE ; Sun-Zheng-Yuan ZHANG ; Yu ZHANG ; Jin-Long CAO ; Cheng-Long WANG ; Li-Bo WANG ; Hong-Jin WU ; Jie ZHANG ; Wei-Wei DAI
Journal of Integrative Medicine 2025;23(6):670-682
OBJECTIVE:
Glucocorticoid-induced osteoporosis (GIOP) is a common complication of prolonged glucocorticoid therapy. Chlorogenic acid (CGA), a polyphenol with antioxidant properties that is extracted from traditional Chinese medicines such as Eucommiae Cortex, has potential anti-osteoporotic activity. This study aimed to investigate the possible effects of CGA on GIOP in mice and murine long bone osteocyte Y4 (MLO-Y4) cells and explore the underlying molecular mechanisms.
METHODS:
The protective effects of CGA were initially evaluated in the GIOP mouse model induced by dexamethasone (Dex). The micro-computed tomography, hematoxylin-eosin staining, silver nitrate staining, and serum detection were used to assess the efficacy of CGA for improving bone formation in vivo. Then, network pharmacology analysis was used to predict the potential targets and molecular mechanisms underlying the therapeutic efficacy of CGA against GIOP. After that, 2',7'-dichlorofluorescein diacetate staining, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting were used to verify the mechanisms of CGA against GIOP in vitro.
RESULTS:
Animal experiments showed that CGA treatment effectively attenuated Dex-induced decreases in bone mass and strength and improved disrupted osteocyte morphology in mice. The protein-protein interaction analysis highlighted erb-b2 receptor tyrosine kinase (ERBB2), which is also known as human epidermal growth factor receptor 2 (HER2), caspase-3, kinase insert domain receptor, matrix metallopeptidase 9, matrix metallopeptidase 2, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor as core targets. The Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched pathways (P < 0.05), including the ERBB, phosphoinositide 3 kinase-AKT serine/threonine kinase 1 (AKT), and mechanistic target of rapamycin kinase (mTOR) pathways. Cellular experiments verified that CGA enhanced bone formation and promoted autophagy while inhibiting apoptosis in MLO-Y4 cells exposed to Dex, which was associated with the upregulated expression of HER2 and activation of the HER2/AKT/mTOR signaling pathway.
CONCLUSION
CGA exerted anti-osteoporotic effects against GIOP, partially through targeting osteocytes and modulating the HER2/AKT/mTOR signaling pathway. Please cite this article as: Xie AN, Zhang SZY, Zhang Y, Cao JL, Wang CL, Wang LB, Wu HJ, Zhang J, Dai WW. Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway. J Integr Med. 2025; 23(6):670-682.
Animals
;
Chlorogenic Acid/therapeutic use*
;
Osteoporosis/metabolism*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Mice
;
Glucocorticoids/adverse effects*
;
Receptor, ErbB-2/metabolism*
;
Proto-Oncogene Mas
;
Dexamethasone/adverse effects*
;
Osteocytes/drug effects*
;
Osteogenesis/drug effects*
;
Male
;
Cell Line
;
Mice, Inbred C57BL
;
Humans
10.Advancements and applications in radiopharmaceutical therapy.
Shiya WANG ; Mingyi CAO ; Yifei CHEN ; Jingjing LIN ; Jiahao LI ; Xinyu WU ; Zhiyue DAI ; Yuhan PAN ; Xiao LIU ; Xian LIU ; Liang-Ting LIN ; Jianbing WU ; Ji LIU ; Qifeng ZHONG ; Zhenwei YUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):641-657
Radiopharmaceuticals operate by combining radionuclides with carriers. The radiation energy emitted by radionuclides is utilized to selectively irradiate diseased tissues while minimizing damage to healthy tissues. In comparison to external beam radiation therapy, radionuclide drugs demonstrate research potential due to their biological targeting capabilities and reduced normal tissue toxicity. This article reviews the applications and research progress of radiopharmaceuticals in cancer treatment. Several key radionuclides are examined, including 223Ra, 90Y, Lutetium-177 (177Lu), 212Pb, and Actinium-225 (225Ac). It also explores the current development trends of radiopharmaceuticals, encompassing the introduction of novel radionuclides, advancements in imaging technologies, integrated diagnosis and treatment approaches, and equipment-medication combinations. We review the progress in the development of new treatments, such as neutron capture therapy, proton therapy, and heavy ion therapy. Furthermore, we examine the challenges and breakthroughs associated with the clinical translation of radiopharmaceuticals and provide recommendations for the research and development of novel radionuclide drugs.
Humans
;
Radiopharmaceuticals/therapeutic use*
;
Neoplasms/radiotherapy*
;
Radioisotopes/therapeutic use*
;
Animals

Result Analysis
Print
Save
E-mail