1.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
2.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from
3.Application of the OmniLogTM microbial identification system in the detection of the host spectrum for wild-type plague phage in Qinghai Plateau
Cun-Xiang LI ; Zhi-Zhen QI ; Qing-Wen ZHANG ; Hai-Hong ZHAO ; Long MA ; Pei-Song YOU ; Jian-Guo YANG ; Hai-Sheng WU ; Jian-Ping FENG
Chinese Journal of Zoonoses 2024;40(1):21-25
The growth of three plague phages from Qinghai Plateau in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,PTB5,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were detected through a micromethod based on the OmniLogTM microbial identification system and by the drop method,to provide a scientific basis for future ecological studies and classification based on the host range.For plague vaccine strains EV76 and 614F,successful phage infection and subsequent phage growth were observed in the host bacte-rium.Diminished bacterial growth and respiration and a concomitant decrease in color were observed with the OmniLogTM mi-crobial identification system at 33 ℃ for 48 h.Yersinia pseudotuberculosis PTB5 was sensitive to Yersinia pestis phage 476,but Yersinia pseudotuberculosis PST5 was insensitive to phage 087 and 072204.Three strains of non-Yersinia pestis(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were insensitive to Yersinia pestis pha-ges 087,072204,and 476 showed similar growth curves.The growth of phages 476 and 087,as determined with the drop method,in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersin-ia enterocolitica 52302-2)showed the same results at 37 ℃,on the basis of comparisons with the OmniLogTM microbial i-dentification system;in contrast,phages 072204 did not show plaques on solid medium at 37 ℃ with plague vaccine strains EV76 and 614F.Determination based on the OmniLogTM detection system can be used as an alternative to the traditional determination of the host range,thus providing favorable application val-ue for determining the interaction between the phage and host bacteria.
4.Role of Ferroptosis in Osteoarthritis and Traditional Chinese Medicine Intervention: A Review
Xiaojing GUO ; Huan QIN ; Dongliang XIANG ; Yan WANG ; Li ZHANG ; Bo ZHANG ; Shujin WANG ; Xiaotong LI ; Mingyue ZHAO ; Shanhong WU ; Fei PEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):263-272
Osteoarthritis (OA) is characterized by articular cartilage degeneration, synovial hyperplasia, hyperosteogeny, and narrowing of joint space, which can be caused by trauma, inflammation, and other factors. With the increasing global population aging, the incidence of OA is rising year by year, making it a major public health problem that urgently needs to be addressed. Exploring effective treatment schemes is particularly important. The pathogenesis of OA is complex, including oxidative stress, autophagy, and apoptosis. Recent studies have found that ferroptosis, a new type of cell death, is also an important pathogenic factor in OA, characterized by a series of complex changes such as iron ion accumulation, glutathione (GSH) depletion, and mitochondrial dysfunction. Research shows that inhibiting ferroptosis in chondrocytes can promote chondrocyte proliferation, delay extracellular matrix (ECM) degradation, and reduce synovial hyperplasia and inflammation. Targeting ferroptosis is a new direction in the treatment of OA. OA treatment includes intra-articular injections of steroids or hyaluronic acid and artificial joint replacement, but there are limitations. Traditional Chinese medicine (TCM) has been widely used in the treatment of various diseases because of its low cost, low drug resistance, and few side effects. Cell and animal experiments have further confirmed that TCM can intervene in the treatment of OA with ferroptosis from multiple targets, multiple levels, and aspects, but the mechanism of its treatment of OA based on ferroptosis has not been clarified. This paper discussed iron metabolism, lipid peroxidation, cysteine/glutamate transporter system Xc- (system Xc-)/GSH/glutathione peroxidase 4 (GPX4) pathway, nicotinamide adenine dinucleotide phosphate(NADPH)/ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) pathway, tumor protein p53 in OA, and related molecular targets of Chinese medicine monomers and compounds on ferroptosis inhibition. Their potential therapeutic mechanisms were further analyzed to provide theoretical guidance for the treatment of OA by TCM and useful reference for the research and development of related drugs.
5.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
6.Research progress of artificial intelligence combined with physiologically based pharmacokinetic models
Long-jie LI ; Pei-ying JI ; Ao-le ZHENG ; Muyesaier ALIFU ; Xiao-qiang XIANG
Acta Pharmaceutica Sinica 2024;59(9):2491-2498
Physiologically based pharmacokinetic (PBPK) models have been widely used to predict various stages of drug absorption, distribution, metabolism and excretion. Models based on machine learning (ML) and artificial intelligence (AI) can provide better ideas for the construction of PBPK models, which can accelerate the prediction speed and improve the prediction quality of PBPK. ML and AL can complement the advantages of PBPK model to accelerate the progress of drug research and development. This review introduces the application of machine learning and artificial intelligence in pharmacokinetics, summarizes the research progress of physiological pharmacokinetic models based on machine learning and artificial intelligence, and analyzes the limitations of machine learning and artificial intelligence applications and their application prospects and prospects.
7.Chemical constituents from Codonopsis pilosula in Shanxi and their anti-inflammatory activities
Yan-Gang CHENG ; Pei LI ; Si-Qi YANG ; Xiang-Peng KONG ; Hui-Feng LI ; Yan WANG ; Jin-Yan TAN ; Ying-Li WANG
Chinese Traditional Patent Medicine 2024;46(7):2265-2271
AIM To study the chemical constituents from Codonopsis pilosula(Franch.)Nannf in Shanxi and their anti-inflammatory activities.METHODS The 70% ethanol extract from C.pilosula in Shanxi was isolated and purified by silica gel,ODS and preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their in vitro anti-inflammatory activities were evaluated by RAW264.7 model.RESULTS Sixteen compounds were isolated and identified as ethylsyringin(1),7-O-ethyltangshenoside Ⅱ(2),triandrin(3),trans-isoconiferin(4),methylsyringin(5),9-acetoxy syringin(6),cordifolioidyne B(7),codonopiloenynenoside A(8),codonopilodiynoside F(9),pratialin B(10),lobetyolinin(11),lariciresinol-4-O-β-D-glucoside(12),dihydrodehydrodiconiferyl alcohol 4′-O-β-D-glucoside(13),atractylenolid Ⅲ(14),baimantuoluoamide B(15),benzyl primeveroside(16).Compounds 1-2,5,7-11 and 13-15 had certain anti-inflammatory activities,among which compounds 11,14-15 had higher activities,whose IC50 values were(18.23±4.18),(17.73±3.12),(14.89±2.47)μmol/L,respectively.CONCLUSION Compounds 3,6,13,16 are first isolated from Campanulaceae,2,5,15 are first found from this plant.Compounds 11,14 and 15 have good anti-inflammatory activities.
8.Effect of exercise intensity on body components and CPET indexes of MS patients:A comparison of two prescribed programs
Ruojiang LIU ; Jinmei QIN ; Weizhen XUE ; Zhi LI ; Feng WANG ; Xiang ZHANG ; Hongyu LIU ; Zhiqiang PEI
The Journal of Practical Medicine 2024;40(19):2678-2684
Objective To compare the effects of two exercise intensities on metabolic syndrome(MS).Methods Forty-nine MS patients hospitalized in Taiyuan Central Hospital from December,2022 to January 2024 were selected and randomly divided into two groups:a standard group(n=24)and individual group(n=25).All patients underwent cardiopulmonary exercise test(CPET)before and after treatment,collecting major indexes including body parameter,body component,and metabolic indicator for prescribing exercise programs.The standard group was trained with exercise intensity prescribed on heart rate reserve,while the individual group received the exercise with intensity prescribed on ventilatory threshold.Both groups received equal energy consumption exercise intervention with the same exercise frequency for 12 weeks.Results The two groups demonstrated significant improvements in waist circumference(WC),body mass index(BMI),body fat related indexes,and systolic blood pressure after intervention(P<0.05).The individual group showed significant improvements inWC,BMI and body fat related indexes as compared to the standard group(P<0.05).Both groups showed significant improvements in peak oxygen uptake,(PeakVO2),peak load power(Peak WR),peak metabolic equivalent(PeakMets),and peak respiratory exchange ratio(Peak RER)after intervention(P<0.05).The individual group presented significant improvements in peak heart rate(HRpeak),peak oxygen pulse(Peak VO2/HR),and maximum voluntary ventilation(MVV)(P<0.05)after intervention.Before intervention,the standard group demonstrated significantly higher levels in PeakVO2 and Peak MET compared to the individual group(P<0.05),but after intervention the two groups showed no significant differences in the two indexes.After the intervention,the individual group demonstrated insignificant improvements in all indexes compared to the standard group(P>0.05).Conclusions Both exercise prescriptions based on CPET can effectively improve the health-related indicators of MS patients on condition of moderate exercise intensity.However,the program prescribed based on individualized ventilatory threshold shows superiority to the program prescribed based on maximum physiological value in improving these indicators.
9.Prognostic factors for glioblastoma:a retrospective single-center analysis of 176 adults
Guohao HUANG ; Yongyong CAO ; Lin YANG ; Zuoxin ZHANG ; Yan XIANG ; Yuchun PEI ; Yao LI ; Wei CHEN ; Shengqing LYU
Journal of Army Medical University 2024;46(17):2002-2008
Objective To explore the clinical features,treatment and prognosis of glioblastomas(GBM)in adults.Methods A retrospective cohort study was performed on 176 adult GBM patients admitted to our department from January 2015 to December 2021.Chi-square test was used to investigate the clinical differences between isocitrate dehydrogenase(IDH)mutant and wild-type GBM.Kaplan-Meier and Log-Rank tests were employed to plot survival curve and compute the survival analysis.Multivariate Cox regression model was applied to identify the independent prognostic factors.Results IDH wild-type GBM account for 89.2%and had significantly differences from the IDH-mutant GBM in terms of age of onset,Karnofsky(KPS)score at admission,symptoms of neurological deficit,and methylation status of O6-methylguanine-DNA-methyltransferase(MGMT)promoter(P<0.05).For the IDH wild-type GBM patients receiving conventional therapy,univariate Cox hazard analysis showed gross total resection,methylation of MGMT promoter,initiation of radiation within the 5th to 6th week after surgery,and adjuvant temozolomide(TMZ)chemotherapy ≥6 cycles were favorable prognostic factors for overall survival(OS);GBMs in the left hemisphere,involvement of single lobe,methylation of MGMT promoter,and initiation of radiation within the 5th to 6th week after surgery were favorable prognostic factors for progression free survival(PFS)(all P<0.05).Moreover,multivariate Cox hazard regression analysis indicated that methylation of MGMT promoter,and initiation of radiation within the 5th to 6th week after surgery,and adjuvant TMZ chemotherapy ≥6 cycles were independent protective factors for OS,and GBMs in the left hemisphere,involvement of single lobe and methylation of MGMT promoter were independent protective factors for PFS in the GBM patients(all P<0.05).Conclusion The clinical and prognostic features are totally different between IDH mutant and wild-type GBM,and molecular detections are needed for the further pathological classification.Methylation of MGMT promoter is a primary marker of favorite prognosis for IDH wild-type GBM,and slightly delay in radiotherapy(the 5th to 6th week after surgery)can effectively improve the survival prognosis of IDH wild-type GBM.
10.Establishment and Evaluation Strategy of an in Vitro Cell Model of Bone Marrow Microenvironment Injury in Mouse Acute Graft-Versus-Host Disease
Jia-Yi TIAN ; Pei-Lin LI ; Jie TANG ; Run-Xiang XU ; Bo-Feng YIN ; Fei-Yan WANG ; Xiao-Tong LI ; Hong-Mei NING ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2024;32(2):617-624
Objective:To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease(aGVHD).Methods:Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors,and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients.The recipient mouse received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1× 107/mouse)in 6-8 hours post irradiation to establish a bone marrow transplantation(BMT)mouse model(n=20).In addition,the recipient mice received a lethal dose(8.0 Gy,72.76 cGy/min)of total body γ irradiation,and injected with donor mouse derived bone marrow cells(1 × 107/mouse)and spleen lymphocytes(2 × 106/mouse)in 6-8 hours post irradiation to establish a mouse aGVHD model(n=20).On the day 7 after modeling,the recipient mice were anesthetized and the blood was harvested post eyeball enucleation.The serum was collected by centrifugation.Mouse MSCs were isolated and cultured with the addition of 2%,5%,and 10%recipient serum from BMT group or aGVHD group respectively.The colony-forming unit-fibroblast(CFU-F)experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC.The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining.In addition,the expression of self-renewal-related genes including Oct-4,Sox-2,and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR).Results:We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD.CFU-F assay showed that,on day 7 after the culture,compared with the BMT group,MSC colony formation ability of aGVHD serum concentrations groups of 2%and 5%was significantly reduced(P<0.05);after the culture,at day 14,compared with the BMT group,MSC colony formation ability in different aGVHD serum concentration was significantly reduced(P<0.05).The immunofluorescence staining showed that,compared with the BMT group,the proportion of MSC surface molecules CD29+and CD 105+cells was significantly dereased in the aGVHD serum concentration group(P<0.05),the most significant difference was at a serum concentration of 10%(P<0.001,P<0.01).The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4,Sox-2,and Nanog was decreased,the most significant difference was observed at an aGVHD serum concentration of 10%(P<0.01,P<0.001,P<0.001).Conclusion:By co-culturing different concentrations of mouse aGVHD serum and mouse MSC,we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability,which providing a new tool for the field of aGVHD bone marrow microenvironment damage.

Result Analysis
Print
Save
E-mail