1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.The Application of Quantum Dots in Disease Diagnosis and Treatment
Ji-Sheng SHEN ; Li-Li QI ; Jin-Bo WANG ; Zhi-Jian KE ; Qi-Chao WANG
Progress in Biochemistry and Biophysics 2025;52(8):1917-1931
Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science.
6.Analysis of factors for international normalized ratio levels>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement
Shengmin ZHAO ; Bo FU ; Fengying ZHANG ; Weijie MA ; Shourui HUANG ; Qian LI ; Huan TAO ; Li DONG ; Jin CHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):655-662
Objective To investigate the factors influencing international normalized ratio (INR)>3.0 in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Methods A retrospective analysis was performed on the clinical data of patients who underwent mechanical heart valve replacement surgery and received warfarin anticoagulation therapy at West China Hospital of Sichuan University from January 1, 2011 to June 30, 2022. Based on the discharge INR values, patients were divided into two groups: an INR≤3.0 group and an INR>3.0 group. The factors associated with INR>3.0 at the time of discharge were analyzed. Results A total of 8901 patients were enrolled, including 3409 males and 5492 females, with a median age of 49.3 (43.5, 55.6) years. The gender, body mass index (BMI), New York Heart Association (NYHA) cardiac function grading, INR, glutamic oxaloacetic transaminase, and preoperative prothrombin time (PT) were statistically different between the two groups (P<0.05). Multivariate logistic regression analysis revealed that lower BMI, preoperative PT>15 s, and mitral valve replacement were independent risk factors for INR>3.0 at discharge (P<0.05). Conclusion BMI, preoperative PT, and surgical site are factors influencing INR>3.0 at discharge in patients undergoing warfarin anticoagulation therapy after mechanical heart valve replacement. Special attention should be given to patients with lower BMI, longer preoperative PT, and mitral valve replacement to avoid excessive anticoagulation therapy.
7.Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023 edition).
Qing ZHAO ; Tong WANG ; Hongbin WANG ; Peng CAO ; Chengyu JIANG ; Hongzhi QIAO ; Lihua PENG ; Xingdong LIN ; Yunyao JIANG ; Honglei JIN ; Huantian ZHANG ; Shengpeng WANG ; Yang WANG ; Ying WANG ; Xi CHEN ; Junbing FAN ; Bo LI ; Geng LI ; Bifeng LIU ; Zhiyang LI ; Suhua QI ; Mingzhen ZHANG ; Jianjian ZHENG ; Jiuyao ZHOU ; Lei ZHENG ; Kewei ZHAO
Chinese Herbal Medicines 2024;16(1):3-12
To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.
8.A unicenter real-world study of the correlation factors for complete clinical response in idiopathic inflammatory myopathies
Zhanhong LAI ; Jiachen LI ; Zelin YUN ; Yonggang ZHANG ; Hao ZHANG ; Xiaoyan XING ; Miao SHAO ; Yue-Bo JIN ; Naidi WANG ; Yimin LI ; Yuhui LI ; Zhanguo LI
Journal of Peking University(Health Sciences) 2024;56(2):284-292
Objective:To investigate the correlation factors of complete clinical response in idiopathic inflammatory myopathies(IIMs)patients receiving conventional treatment.Methods:Patients diagnosed with IIMs hospitalized in Peking University People's Hospital from January 2000 to June 2023 were in-cluded.The correlation factors of complete clinical response to conventional treatment were identified by analyzing the clinical characteristics,laboratory features,peripheral blood lymphocytes,immunological indicators,and therapeutic drugs.Results:Among the 635 patients included,518 patients finished the follow-up,with an average time of 36.8 months.The total complete clinical response rate of IIMs was 50.0%(259/518).The complete clinical response rate of dermatomyositis(DM),anti-synthetase syn-drome(ASS)and immune-mediated necrotizing myopathy(IMNM)were 53.5%,48.9%and 39.0%,respectively.Fever(P=0.002)and rapid progressive interstitial lung disease(RP-ILD)(P=0.014)were observed much more frequently in non-complete clinical response group than in complete clinical re-sponse group.The aspartate transaminase(AST),lactate dehydrogenase(LDH),D-dimer,erythrocyte sedimentation rate(ESR),C-reaction protein(CRP)and serum ferritin were significantly higher in non-complete clinical response group as compared with complete clinical response group.As for the treat-ment,the percentage of glucocorticoid received and intravenous immunoglobin(IVIG)were significantly higher in non-complete clinical response group than in complete clinical response group.Risk factor analysis showed that IMNM subtype(P=0.007),interstitial lung disease(ILD)(P=0.001),eleva-ted AST(P=0.012),elevated serum ferritin(P=0.016)and decreased count of CD4+T cells in peripheral blood(P=0.004)might be the risk factors for IIMs non-complete clinical response.Conclu-sion:The total complete clinical response rate of IIMs is low,especially for IMNM subtype.More effec-tive intervention should be administered to patients with ILD,elevated AST,elevated serum ferritin or decreased count of CD4+T cells at disease onset.
9.Comparison of vault measurements by Scansys, Pentacam, CASIA and Arcscan after ICL implantation
Bo ZHANG ; Hao WANG ; Chenjiu PANG ; Wenwen DU ; Zaohe SUN ; Jin LI ; Yuwei GU ; Shulin WANG ; Qi FAN
Chinese Journal of Experimental Ophthalmology 2024;42(4):354-360
Objective:To evaluate the consistency of the Chinese three-dimensional anterior visual field analysis system (Scansys), the anterior segment analyzer (Pentacam), the frequency-domain anterior segment optical coherence tomography system (CASIA SS-1000), and a new ultra-high frequency digital ultrasound scanning system (Arcscan Insight100) to measure central vault after implantable collamer lens (ICL) implantation in myopic eyes with crystalline lenses.Methods:A diagnostic test study was conducted.Fifty-six myopic patients (56 eyes) who underwent ICL V4c implantation from June to December 2019 were included.Scansys, Pentacam, CASIA and Arcscan were used to measure the central vault after surgery.The vault measurements were compared.Correlations between the measurements of the four instruments were analyzed using Pearson correlation analysis, and consistency comparisons were analyzed using the Bland-Altman method.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Henan Eye Hospital (No.HNEECKY-2021[13]). Written informed consent was obtained from each subject.Results:The central vault measurements by Scansys, Pentacam, CASIA and Arcscan were (481.8±191.6), (476.4±190.6), (619.3±207.5) and (534.0±221.2)μm, respectively, with a statistically significant overall difference ( F=143.301, P<0.001). The vault measurements by Scansys and Pentacam were significantly lower than CASIA and Arcscan, and Arcscan was lower than CASIA, with statistically significant differences (all at P<0.001). There were strong positive correlations in vault measurements between Arcscan and CASIA, Arcscan and Pentacam, Arcscan and Scansys, CASIA and Pentacam, CASIA and Scansys, Pentacam and Scansys ( r=0.982, 0.933, 0.931, 0.942, 0.941, 0.989; all at P<0.001). Intraclass correlation coefficients of vault measurements by Scansys, Pentacam, CASIA and Arcscan were 0.985, 0.975, 0.998, 0.992, respectively.The 95% limits of agreement of vault measurements differences were -170 to 0, 0 to 280, 0 to 280, -110 to 210, -100 to 220 μm, between CASIA and Arcscan, CASIA and Scansys, CASIA and Pentacam, Arcscan and Scansys, Arcscan and Pentacam, respectively, and the maximum absolute value of the difference was beyond the clinically acceptable range, showing poor agreement.The 95% limits of agreement of vault measurement difference was -60 to 50 μm between Scansys and Pentacam, showing a good agreement. Conclusions:The repeatability of the vault after ICL V4c implantation in myopic eyes measured by the four instruments is good.Among them, the vault measurements of Scansys and Pentacam are smaller, showing good consistency, and their results could be substituted for each other.The measurement of CASIA is the largest, followed by Arcscan, which have a large difference from each other, and their results can not be substituted for each other, which should be comprehensively analyzed with the actual situation in clinical work.
10.Monte Carlo simulation-based optimization of the rivaroxaban regimen for anticoagulation in patients with different classes of renal function
Qiaoling YU ; Weiwei ZHAI ; Yumeng LI ; Panpan JIN ; Bo QIU ; Huizhen WU
China Pharmacy 2024;35(24):3016-3022
OBJECTIVE To optimize the rivaroxaban dosing regimen for anticoagulation in patients with different renal function levels. METHODS The administration regimen was determined based on the drug instructions for rivaroxaban and the actual medication situation of the patient. The target concentration range and the subsection interval were established using rivaroxaban blood minimum concentration for patients from Hebei General Hospital and reference range of rivaroxaban laboratory monitoring concentration recommended by International Council for Standardization in Hematology. The probability of different dosing regimens in each target concentration range was investigated with Monte Carlo simulation using Oracle Crystal Ball software (V11.1.2.4). RESULTS A total of 97 patients with non-valvular atrial fibrillation were enrolled and the minimum concentration of rivaroxaban was tested 125 times with a median trough concentration of 32.2 ng/mL; a total of 121 patients with venous thrombosis were enrolled and the minimum concentration was tested 159 times with a median minimum concentration of 31.0 ng/mL. The reference range for steady-state minimum concentration in patients with non-valvular atrial fibrillation was 12-137 and 3-153 ng/mL, while the reference range for steady-state minimum concentration in patients with venous thrombosis was 6-239 and 3-224 ng/mL. Monte Carlo simulation results showed that in patients with non-valvular atrial fibrillation, the optimal rivaroxaban dosing regimen for patients with glomerular filtration rate (eGFR) 0-30 mL/min was 5 mg once daily; for patients with eGFR>30-60 mL/min, the optimal dosing regimen was 10-20 mg once daily or 5 mg twice daily; for patients with eGFR>60-90 mL/min, the optimal dosing regimen was 15-30 mg once daily or 5-10 mg twice daily; for patients with eGFR>90-120 mL/min, the optimal dosing regimen was 25-30 mg once daily or 5-15 mg twice daily. For patients with venous thrombosis, it is not recommended to use rivaroxaban more than 5 mg once daily for patients with eGFR 0-30 mL/min; the optimal dosing regimens of rivaroxaban were 5 mg once daily for patients with eGFR>30-60 mL/min, 25- 30 mg once daily or 5-15 mg twice daily for patients with eGFR>60-90 mL/min, 10-15 mg twice daily for patients with eGFR> 90-120 mL/min. CONCLUSIONS Rivaroxaban should be selected carefully as the anticoagulants for patients with severe renal function impairment. Rivaroxaban possesses a wide reference range in the minimum concentration and considerable individual variability. The dosage and frequency of rivaroxaban can be personalized through the Monte Carlo simulation method, taking into account patients’ renal function.

Result Analysis
Print
Save
E-mail