1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
		                        		
		                        			
		                        			ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α. 
		                        		
		                        		
		                        		
		                        	
2.Depressive symptoms and associated factors among middle school and college students from 2021 to 2023 in Hunan Province
Chinese Journal of School Health 2025;46(1):96-101
		                        		
		                        			Objective:
		                        			To investigate the current status and trends of depressive symptoms among middle school and college students in Hunan Province, and to explore the primary related factors of depressive symptoms, so as to provide a scientific basis for strengthening mental health among students.
		                        		
		                        			Methods:
		                        			A total of 279 382 students in Hunan Province were selected through a stratified cluster random sampling method from 2021 to 2023. National Survey Questionnaire on Common Diseases and Health Influencing Factors among Students was adopted for the survey, and the Center for Epidemiological Studies Depression Scale was used to assess their depressive symptoms. The χ 2 test and trend χ 2 test were used to analyze depressive symptoms prevalence and trends, and multivariable Logistic regression was used to analyze the related factors of depressive symptoms.
		                        		
		                        			Results:
		                        			The prevalence of depressive symptoms among students in Hunan Province from 2021 to 2023 were 19.66%, 20.17% and 21.47%, respectively, showing an upward trend ( χ 2 trend =9.07,  P <0.01). In addition, the results of the multivariable Logistic regression analysis showed that students with healthy diet ( OR=0.43, 95%CI =0.40-0.45), adequate sleep ( OR=0.88, 95%CI =0.86-0.90), and acceptable screen time ( OR=0.61, 95%CI =0.60-0.62) had lower risks in depressive symptoms detection, while students with smoking ( OR= 1.95, 95%CI =1.88-2.02), secondhand smoke exposure ( OR=1.33, 95%CI =1.30-1.36) and Internet addiction ( OR= 4.19 , 95%CI =4.05-4.34) had higher risks in depressive symptoms detection, with differences in the degree of association among different genders, educational stages and urban rural groups ( OR=0.40-6.04, Z =-12.69-11.98) ( P <0.05).
		                        		
		                        			Conclusions
		                        			There is an increasing trend of depressive symptoms among middle school and college students in Hunan Province from 2021 to 2023.Targeted depression prevention measures should be taken for students with different demographic characteristics to promote their mental health.
		                        		
		                        		
		                        		
		                        	
3.The impact of postpartum depression on maternal responsiveness in infant care
Shuzhen LI ; Fang WANG ; Ke WANG ; Su LIU ; Qian WEI ; Qing YANG ; Leilei LIU ; Huijing SHI
Shanghai Journal of Preventive Medicine 2025;37(3):271-275
		                        		
		                        			
		                        			ObjectiveTo analyze the impact of maternal postpartum depression (PPD) at 2 months postpartum on caregiving for infants aged2 to 24 months, and to provide a scientific basis for future maternal and infant healthcare services. MethodsBased on the Shanghai Maternal-Child Pairs Cohort, 1 060 mother-child pairs were selected from those fully participating in follow-up visits at 2, 6, 12, and 24 months postpartum. Pregnancy and childbirth-related information was collected using standardized questionnaire surveys and hospital obstetric and maternity records. The Edinburgh postpartum depression scale was used to assess the maternal postpartum depressive symptoms at 2 months postpartum. At 2, 6, 12, and 24 months postpartum, questionnaire survey was used to evaluate the maternal responsiveness in caregiving and the provision of early learning opportunities for infants. Scores for responsive caregiving and early learning opportunities at 2, 6, 12, and 24 months were grouped based on the 25th percentile (P25) of total scores. The mixed-effects model was used to analyze the longitudinal impact of maternal postpartum depression at 2 months on the caregiving of 2 to 24-month-old infants. ResultsThe longitudinal results from the mixed-effects model did not show an impact of maternal PPD on infant responsive caregiving within 12 months and early learning opportunities within24 months. However, cross-sectional analysis revealed that, compared to the non-PPD group, the risk of low responsive caregiving at 2 months in the PPD group was 93% higher (OR=1.931, 95%CI: 1.113‒3.364, P=0.019). The risks for low provision of early learning opportunities at2 months and 24 months increased by 59% (OR=1.589, 95%CI: 1.082‒2.324, P=0.017) and 60% (OR=1.598, 95%CI:1.120‒2.279, P=0.010), respectively. ConclusionMaternal postpartum depression increases the risk of low responsive caregiving at 2 months, but its long-term effects warrant further research. 
		                        		
		                        		
		                        		
		                        	
4.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
		                        		
		                        			
		                        			This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes. 
		                        		
		                        		
		                        		
		                        	
5.Intergenerational Effects on Metabolic Health: Perspectives on Maternal Nutrition and Exercise During Pregnancy
Jie LI ; Hai-Wang SHI ; Rui DUAN
Progress in Biochemistry and Biophysics 2025;52(6):1605-1616
		                        		
		                        			
		                        			With the increasing prevalence of overweight and obesity among children and adolescents in China, pediatric metabolic syndrome has emerged as a significant public health challenge. The Developmental Origins of Health and Disease (DOHaD) theory underscores the critical influence of early environmental factors on lifelong metabolic health. Consequently, maternal nutritional status and physical activity during pregnancy have become key modifiable factors that have attracted considerable attention in recent years. Research indicates exposure to a maternal high-fat diet (HFD) during pregnancy has long-term effects on offspring health, which may be transmitted through placental transit disorder, inflammation, and oxidative stress. Similarly, a high-protein diet (HPD) during pregnancy exhibits a dose- and time-dependent biphasic effect: excessive intake may lead to fetal growth restriction and an increased risk of preterm birth, whereas moderate supplementation may instead reduce the susceptibility of offspring to obesity. Interestingly, caloric restriction (CR) during pregnancy presents a double-edged sword: while it may impair the development of metabolic organs in offspring, moderate CR in metabolically compromised mothers can ameliorate maternal metabolic dysfunction and reprogram oocyte DNA methylation, significantly lowering the risk of metabolic disorders in offspring. Notably, metabolic abnormalities induced by a low-protein diet (LPD) during pregnancy demonstrate lifecycle-accumulative effects and transgenerational inheritance, with offspring exhibiting obesity phenotypes during weaning, insulin resistance in adulthood, and hepatic decompensation in old age, mediated through oocyte epigenetic reprogramming. Additionally, maintaining an optimal micronutrient balance is crucial for the metabolic homeostasis of offspring, as both deficiency and excess can lead to detrimental outcomes. Maternal exercise has been established as a safe and effective non-pharmacological intervention that confers multigenerational metabolic benefits through diverse biological pathways. Maternal metabolic dysregulation represents a critical determinant of offspring metabolic disorders. Regular exercise during gestation exerts protective effects by attenuating maternal systemic inflammation and reducing the incidence of pregnancy-related complications, thereby effectively mitigating fetal overgrowth and metabolic dysfunction. This dual benefit for both mother and offspring underscores the pivotal role of gestational physical activity in promoting long-term metabolic health. The placenta, serving as the exclusive interface for maternal-fetal communication, mediates exercise-induced metabolic programming through enhanced secretion of key regulatory factors (including SOD3, Apelin, ADPN, and Irisin) and promotes the development of vascular networks, collectively optimizing nutrient transport efficiency. The intrauterine period represents a crucial window for epigenetic reprogramming, during which maternal exercise modulates DNA methylation patterns of critical metabolic genes (e.g., Ppargc-1α, Prdm16, Klf4, and Slc23a2) in offspring, thereby enhancing their capacity to resist metabolic disorders. Notably, the regulatory effects of maternal exercise extend beyond the gestational period. Postnatally, exercise-induced modifications in the bioactive components of breast milk and gut microbiota composition contribute to the sustained maintenance of metabolic homeostasis in offspring, establishing a continuum of metabolic protection from prenatal to postnatal stages. This review explores the potential of maternal combined nutrition-exercise interventions, suggesting that such strategies may synergistically enhance transgenerational health benefits through interactions within the metabolic-epigenetic network, thereby outperforming single interventions. Additionally, it examines current research limitations, including controversies surrounding transgenerational mechanisms, sex-specific responses, and undefined dynamic thresholds, while providing directions for future investigations. These findings pave the way for a theoretical foundation for early-life health interventions, potentially offering a more effective strategy for combatting intergenerational metabolic disorders. 
		                        		
		                        		
		                        		
		                        	
6.Treatment Strategies for Sundowning Syndrome in Alzheimer's Disease Based on the Zi Wu Liu Zhu Theory
Xingyun SUN ; Fuyao LI ; Jing SHI
Journal of Traditional Chinese Medicine 2025;66(13):1340-1344
		                        		
		                        			
		                        			This paper explores the traditional Chinese medicine (TCM) pathomechanism, as well as pattern differentiation and treatments for sundowning syndrome in Alzheimer's disease through midnight-noon and ebb-flow theory. The syndrome's onset aligns with three critical time periods governed by three specific channels, including the bladder channel (3:00—5:00 pm, Shen period), the kidney channel (5:00—7:00 pm, You period), and the pericardium channel (7:00—9:00 pm, Xu period). It is believed that when the symptoms occurred at the bladder channel (Shen period), the pathomechanism manifested as yang qi floating upward and internal heat-blood stasis, and the treatment should supplement the kidney and essence, expelling stasis and discharging heat, as well as returning fire to its origin, using modified Taohe Chengqi Decoction (桃核承气汤) combined with Erzhi Pill (二至丸). When the symptoms occurred at the kidney channel (You period), the pathomechanism characterized by marrow sea deficiency and yin failing to anchor yang, so treatment follows the principles of supplementing the kidney and filling essence, as well as calming the mind and subduing yang, using modified Liuwei Dihuang Pill (六味地黄丸) combined with Erzhi Pill (二至丸). When the symptoms occurred at the pericardium channel (Xu period), the pathomechanism characterized as phlegm-turbidity clouding the mind and obstructing the brain, then the intervention need clear heat and dissolve phlegm, as well as open the orifices and calm the mind, using modified Wendan Decoction (温胆汤). Additionally, comprehensive therapy combining oral administration of TCM decoctions with acupuncture, pressure pills on ear points, and point application therapy, which provides clinical insights for the treatment of this disease. 
		                        		
		                        		
		                        		
		                        	
7.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
		                        		
		                        			
		                        			Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition. 
		                        		
		                        		
		                        		
		                        	
8.Diagnosis of an Outbreak of Canine Distemper in Cynomolgus Monkeys in an Experimental Monkey Farm in 2019
Chenjuan WANG ; Lingyan YANG ; Lipeng WANG ; Xueping SUN ; Jingwen LI ; Lianxiang GUO ; Rong RONG ; Changjun SHI
Laboratory Animal and Comparative Medicine 2025;45(3):360-367
		                        		
		                        			
		                        			Objective To report the diagnosis of a canine distemper virus outbreak among a colony of cynomolgus monkeys at an experimental monkey farm in 2019. MethodsA total of 46 samples were collected from 21 diseased cynomolgus monkeys (exhibiting symptoms such as facial rash, skin scurf, runny nose, and diarrhea) and from one deceased monkey at an experimental monkey breeding farm in South China in late 2019, including serum, skin rash swabs, and anticoagulated whole blood, liver, lung, and skin tissues were submitted for testing. All submitted samples were tested for canine distemper virus gene fragments using real-time quantitative PCR, while immunohistochemical staining was performed to detect canine distemper virus nucleoprotein in lung tissues. The skin tissue of the deceased monkey was ground and sieved. The filtrate was inoculated into a monolayer MDCK cell line for virus isolation. Then, whole-genome sequencing was performed to identify the isolated virus. The Clustal Omega tool was used to align and analyze the homology of different Asian canine distemper virus isolates. A phylogenetic tree was constructed, followed by genetic evolutionary analysis. ResultsClinical retrospective analysis revealed that the diseased cynomolgus monkeys exhibited symptoms similar to those observed in cynomolgus monkeys infected with measles virus. Necropsy findings showed red lesions in the lungs and significant hemorrhage in the colonic mucosa. Real-time quantitative PCR detected canine distemper virus nucleic acid in the serum, skin rash swabs of the infected monkeys, and various tissue samples of the deceased monkey, all of which tested positive. Calculation based on the standard curve formula indicated the viral load was highest in the skin tissue. Immunohistochemical staining of the deceased monkey's lung tissue demonstrated aggregation of CDV nucleoprotein in alveolar epithelial cells, bronchi, and bronchioles. A CDV strain was isolated from the skin tissue of the deceased monkey. Phylogenetic analysis indicated that this strain shares the closest relationship (98.86%) with the Asian-1 type canine distemper virus strain CDV/dog/HCM/33/140816, previously identified in dogs in Vietnam. ConclusionBased on comprehensive analysis of clinical symptoms, nucleic acid detection, viral protein immunohistochemistry, and whole-genome sequencing results, the diagnosis confirms that the cynomolgus monkeys in this facility are infected with canine distemper virus. It is recommended to include canine distemper virus as a routine surveillance target in captive monkey populations. Additionally, this study provides a foundation for further research on the molecular biological characteristics of canine distemper virus. 
		                        		
		                        		
		                        		
		                        	
9.Establishment of a Rat Model of Alzheimer's Disease by Introducing Human Triple Mutant APP Gene into Hippocampus via Brain Stereotactic Technology
Linlin XIAO ; Yixuan YANG ; Shanshan LI ; Lanshiyu LUO ; Siwei YIN ; Juming SUN ; Wei SHI ; Yiqiang OUYANG ; Xiyi LI
Laboratory Animal and Comparative Medicine 2025;45(3):269-278
		                        		
		                        			
		                        			Objective To establish a rat model of Alzheimer's disease (AD) expressing human triple mutant amyloid precursor protein (APP) in the hippocampus, and to provide a model for the study of disease mechanisms and drug development. Methods Twenty-four 12-week-old SPF-grade female SD rats were randomly divided into a blank control group, a virus control group and an experimental group, with eight rats in each group; among them, the experimental group received a stereotaxic injection of adeno-associated virus (AAV) carrying the human triple mutant APP and NanoLuc luciferase genes into the hippocampus. In vivo imaging was used to observe viral expression in the brains of rats in each group, the novel object recognition test was used to assess the recognition memory of the rats in each group, real-time fluorescent quantitative PCR was used to detect the expression level of the APP gene, HE staining was used to examine the brain histopathology, Nissl staining was used to assess the hippocampal lesions, and immunohistochemistry was used to detect the deposition of amyloid β-protein (Aβ). Results In vivo imaging showed that reporter fluorescence was detected in the brains of rats in both experimental and virus control groups. Fluorescence quantitative PCR showed that the expression level of the APP gene was significantly increased in the brains of rats in the experimental group (P<0.01). Novel object recognition test revealed that the recognition memory of rats in the experimental group was significantly reduced compared with that of the blank control group (P<0.01). Six months after recombinant AAV virus infection, HE staining and Nissl staining of brain tissues showed that the number of neurons and Nissl bodies in the CA1 region of the hippocampus in the experimental group was reduced and disorganized; immuno-histochemistry testing of the CA1 region of the hippocampus and the pyramidal cell layer of the experimental group revealed prominent brown deposits, indicating Aβ protein deposition. Conclusion The rat model successfully established by stereotaxic injection and AAV-mediated delivery of human triple mutant APP gene exhibits typical AD features, providing a valuable animal model for studying AD pathology and developing drug therapies targeting Aβ protein deposition. 
		                        		
		                        		
		                        		
		                        	
10.Diagnosis of an Outbreak of Canine Distemper in Cynomolgus Monkeys in an Experimental Monkey Farm in 2019
Chenjuan WANG ; Lingyan YANG ; Lipeng WANG ; Xueping SUN ; Jingwen LI ; Lianxiang GUO ; Rong RONG ; Changjun SHI
Laboratory Animal and Comparative Medicine 2025;45(3):360-367
		                        		
		                        			
		                        			Objective To report the diagnosis of a canine distemper virus outbreak among a colony of cynomolgus monkeys at an experimental monkey farm in 2019. MethodsA total of 46 samples were collected from 21 diseased cynomolgus monkeys (exhibiting symptoms such as facial rash, skin scurf, runny nose, and diarrhea) and from one deceased monkey at an experimental monkey breeding farm in South China in late 2019, including serum, skin rash swabs, and anticoagulated whole blood, liver, lung, and skin tissues were submitted for testing. All submitted samples were tested for canine distemper virus gene fragments using real-time quantitative PCR, while immunohistochemical staining was performed to detect canine distemper virus nucleoprotein in lung tissues. The skin tissue of the deceased monkey was ground and sieved. The filtrate was inoculated into a monolayer MDCK cell line for virus isolation. Then, whole-genome sequencing was performed to identify the isolated virus. The Clustal Omega tool was used to align and analyze the homology of different Asian canine distemper virus isolates. A phylogenetic tree was constructed, followed by genetic evolutionary analysis. ResultsClinical retrospective analysis revealed that the diseased cynomolgus monkeys exhibited symptoms similar to those observed in cynomolgus monkeys infected with measles virus. Necropsy findings showed red lesions in the lungs and significant hemorrhage in the colonic mucosa. Real-time quantitative PCR detected canine distemper virus nucleic acid in the serum, skin rash swabs of the infected monkeys, and various tissue samples of the deceased monkey, all of which tested positive. Calculation based on the standard curve formula indicated the viral load was highest in the skin tissue. Immunohistochemical staining of the deceased monkey's lung tissue demonstrated aggregation of CDV nucleoprotein in alveolar epithelial cells, bronchi, and bronchioles. A CDV strain was isolated from the skin tissue of the deceased monkey. Phylogenetic analysis indicated that this strain shares the closest relationship (98.86%) with the Asian-1 type canine distemper virus strain CDV/dog/HCM/33/140816, previously identified in dogs in Vietnam. ConclusionBased on comprehensive analysis of clinical symptoms, nucleic acid detection, viral protein immunohistochemistry, and whole-genome sequencing results, the diagnosis confirms that the cynomolgus monkeys in this facility are infected with canine distemper virus. It is recommended to include canine distemper virus as a routine surveillance target in captive monkey populations. Additionally, this study provides a foundation for further research on the molecular biological characteristics of canine distemper virus. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail