1.Total Saponin Fraction of Dioscorea Nipponica Makino Improves Gouty Arthritis Symptoms in Rats via M1/M2 Polarization of Monocytes and Macrophages Mediated by Arachidonic Acid Signaling.
Qi ZHOU ; Hui-Juan SUN ; Xi-Wu ZHANG
Chinese journal of integrative medicine 2023;29(11):1007-1017
OBJECTIVE:
To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).
METHODS:
Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).
RESULTS:
HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).
CONCLUSION
The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.
Rats
;
Humans
;
Animals
;
Arthritis, Gouty/drug therapy*
;
Monocytes/pathology*
;
Interleukin-10/metabolism*
;
Arachidonic Acid/pharmacology*
;
Dioscorea/chemistry*
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha/metabolism*
;
Saponins/therapeutic use*
;
Interleukin-4/metabolism*
;
Leukotriene B4/pharmacology*
;
Rats, Sprague-Dawley
;
Macrophages
;
Signal Transduction
;
RNA, Messenger/metabolism*
2.The antalgic and antiphiogistic function and mechanism of RGDT plaster.
Xiao-Xia LIU ; Zhi-wang WANG ; Xiao-pin CHIEN ; Cai-min LIU ; Hai-yan TUO
Chinese Journal of Applied Physiology 2015;31(5):462-468
OBJECTIVETo study the antalgic and antiphlogistic functions and mechanism of ronggudingtong (RGDT) plaster (traditional Chinese medicine).
METHODSThe painful models were established with hot plate test or acetic acid writhing and the inflammatory models were established with daubing dimethylbenzene on auricle or injecting formaldehyde in toe or synovial envelope to study the antalgic and antiphlogistic functions of RGDT Plaster. The total protein and leukotriene B4(LTB4) in inflammatory exudate were detected to investigate the antalgic and antiphlogistic mechanism of RGDT plaster. The mice were randomly divided into different groups (n = 11), on the basis of drug using, the indexes of pain threshold, swelling degree were observed. Sixty-six mice were used to establish gasbag synovitis model and randomly divided into normal control group,model control group, positive control group (Voltaren gel 0.8 mg/d)and low/medium/high dosage RGDT plaster treating groups(30 mg/d, 60 mg/d, 120 mg/d).
RESULTS30 mg/d, 60 mg/d,120 mg/d RGDT plaster could upgrade the pain thresholds, remit auricular and foot swelling (P < 0.05, P < 0.01), and degrade total protein and LTB4 in inflammatory exudates (P < 0.05, P < 0.01).
CONCLUSIONRGDT plaster has some antalgic and antiphlogistic functions, and one of the mechanisms is depressing synthesis of LTB4.
Analgesics ; pharmacology ; Animals ; Anti-Inflammatory Agents ; pharmacology ; Leukotriene B4 ; metabolism ; Medicine, Chinese Traditional ; Mice ; Pain ; drug therapy
3.12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity.
Jin Wook LEE ; Ho Cheol RYU ; Yee Ching NG ; Cheolmin KIM ; Jun Dong WEI ; Vikineswary SABARATNAM ; Jae Hong KIM
Experimental & Molecular Medicine 2012;44(6):378-386
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-kappaB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-kappaB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Anti-Inflammatory Agents, Non-Steroidal/pharmacology
;
Cell Line
;
Dual Specificity Phosphatase 1/biosynthesis/genetics
;
Enzyme Activation
;
Fatty Acids, Unsaturated/*pharmacology
;
Humans
;
Interleukin-6/*biosynthesis
;
Keratinocytes/*metabolism/radiation effects
;
NF-kappa B/metabolism
;
RNA Interference
;
RNA, Small Interfering
;
Receptors, Leukotriene B4/genetics
;
Signal Transduction/drug effects
;
Skin Diseases/drug therapy
;
*Ultraviolet Rays
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism
4.5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion.
Jae Hoon CHOI ; Jong Gil PARK ; Hyung Jun JEON ; Mi Sun KIM ; Mi Ran LEE ; Mi Ni LEE ; SeongKeun SONN ; Jae Hong KIM ; Mun Han LEE ; Myung Sook CHOI ; Yong Bok PARK ; Oh Seung KWON ; Tae Sook JEONG ; Woo Song LEE ; Hyun Bo SHIM ; Dong Hae SHIN ; Goo Taeg OH
Experimental & Molecular Medicine 2011;43(8):471-478
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-alpha) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-alpha , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.
Animals
;
Atherosclerosis/*drug therapy
;
Cell Adhesion/drug effects
;
Cell Line
;
Cell Movement/drug effects
;
Chemokine CCL2/metabolism
;
Dinoprostone/metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Leukotriene B4/metabolism
;
Macrophages/cytology/drug effects
;
Male
;
Mice
;
Monocytes/cytology/*drug effects
;
Random Allocation
;
Receptors, LDL/deficiency/genetics
;
Thiazolidinediones/*therapeutic use
;
Tumor Necrosis Factor-alpha/pharmacology
5.Up-regulation of BLT2 is critical for the survival of bladder cancer cells.
Ji Min SEO ; Kyung Jin CHO ; Eun Young KIM ; Man Ho CHOI ; Bong Chul CHUNG ; Jae Hong KIM
Experimental & Molecular Medicine 2011;43(3):129-137
The incidence rates of urinary bladder cancer continue to rise yearly, and thus new therapeutic approaches and early diagnostic markers for bladder cancer are urgently needed. Thus, identifying the key mediators and molecular mechanisms responsible for the survival of bladder cancer has valuable implications for the development of therapy. In this study, the role of BLT2, a receptor for leukotriene B4 (LTB4) and 12(S)-hydroxyeicosatetraenoic acid (HETE), in the survival of bladder cancer 253J-BV cells was investigated. We found that the expression of BLT2 is highly elevated in bladder cancer cells. Also, we observed that blockade of BLT2 with an antagonist or BLT2 siRNA resulted in cell cycle arrest and apoptotic cell death, suggesting a role of BLT2 in the survival of human bladder cancer 253J-BV cells. Further experiments aimed at elucidating the mechanism by which BLT2 mediates survival revealed that enhanced level of reactive oxygen species (ROS) are generated via a BLT2-dependent up-regulation of NADPH oxidase members NOX1 and NOX4. Additionally, we observed that inhibition of ROS generation by either NOX1/4 siRNAs or treatment with an ROS-scavenging agent results in apoptotic cell death in 253J-BV bladder cancer cells. These results demonstrated that a 'BLT2-NOX1/4-ROS' cascade plays a role in the survival of this aggressive bladder cancer cells, thus pointing to BLT2 as a potential target for anti-bladder cancer therapy.
*Apoptosis
;
Blotting, Western
;
Cell Proliferation
;
Cells, Cultured
;
Gene Expression Regulation, Neoplastic/*physiology
;
Humans
;
Leukotriene Antagonists/pharmacology
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Phosphorylation
;
RNA, Messenger/genetics
;
RNA, Small Interfering/genetics
;
Reactive Oxygen Species/*metabolism
;
Receptors, Leukotriene B4/antagonists & inhibitors/*genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
;
Tetrazoles/pharmacology
;
Up-Regulation
;
Urinary Bladder Neoplasms/*genetics/mortality
6.Nordihydroguaiaretic acid partially inhibits inflammatory responses after focal cerebral ischemia in rats.
Li-Sheng CHU ; San-Hua FANG ; Yu ZHOU ; Yuan-Jun YIN ; Qing KE ; Wei-Yan CHEN ; Er-Qing WEI
Acta Physiologica Sinica 2010;62(2):101-108
The aim of the present study is to investigate the role of nordihydroguaiaretic acid (NDGA) on inflammatory cells accumulation after focal cerebral ischemia and the underlying mechanism. Focal cerebral ischemia was induced by 30 min of middle cerebral artery occlusion (MCAO) followed by 72 h of reperfusion. NDGA (5 and 10 mg/kg) was administered intraperitoneally 30 min, 2, 24, 48 h after reperfusion, respectively. The brain injuries were observed by neurological and histological examination. Endogenous IgG exudation, neutrophils and macrophages/microglia accumulation, and intercellular adhesion molecule-1 (ICAM-1) protein expression were determined by immunohistochemistry 72 h after reperfusion. ICAM-1 mRNA was determined by RT-PCR 72 h after reperfusion. The catalysates of 5-lipoxygenase (5-LOX), leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs), were evaluated by ELISA 3 h after reperfusion. The results showed that NDGA ameliorated neurological dysfunction, decreased infarct volume, and inhibited endogenous IgG exudation, neutrophils infiltration, ICAM-1 mRNA and protein expression 72 h after reperfusion. Moreover, NDGA reduced the levels of LTB4 and CysLTs 3 h after reperfusion. However, NDGA did not reduce the accumulation of macrophages/microglia 72 h after reperfusion. These results suggest that NDGA decreases neutrophil infiltration in the subacute phase of focal cerebral ischemia via inhibiting 5-LOX activation.
Animals
;
Arachidonate 5-Lipoxygenase
;
metabolism
;
Brain Ischemia
;
complications
;
physiopathology
;
Immunoglobulin G
;
immunology
;
Inflammation
;
etiology
;
physiopathology
;
prevention & control
;
Intercellular Adhesion Molecule-1
;
genetics
;
metabolism
;
Leukotriene B4
;
metabolism
;
Lipoxygenase Inhibitors
;
pharmacology
;
Male
;
Masoprocol
;
pharmacology
;
Neutrophils
;
drug effects
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
prevention & control
7.Involvement of leukotrine B4 receptors in the inflammatory responses and immunological regulation in vitro.
Chun-guang HAN ; Huo-gao HUANG ; Ming HU ; Wen-yan LUO ; Yue GAO ; Qiong WANG ; Yong-xue LIU
Chinese Journal of Applied Physiology 2009;25(2):273-276
AIMBLT1 and BLT2 were both recently cloned and identified as two subtypes of leukotrine B4 (LTB4) receptors. With the usage of U-75302 and LY255283, the specific antagonists of BLT1 and BLT2 respectively, the involvement of BLT1 and BLT2 in the inflammatory and immunological responses was in vitro explored.
METHODS(1) To investigate inhibition of U-75302 and LY255283 on the proliferation of rat synovial cells, 3H-TdR incorporation into the cells was quantified. (2) Flow cytometric assay for interferon-gamma (IFN-gamma) and interleukine 4 (IL-4) profiles in CD4+ T lymphocytes from rat spleen was carried out to determine the ratio of Th1/Th2.
RESULTS(1) For inhibition on rat synovial cells proliferation, U-75302 exerted its effect only at a high concentration of 10 micromol/L and LY255283 at the concentrations of 10 micromol/L-10 micromol/L. (2) Both U-75302 and LY255283 could elevate the percentage of Th2, but could not influence that of Th1.
CONCLUSIONBLT1 and BLT2 were involved in the synovial cells proliferation change the ratio of Th1/Th2. Their meaning served as targets for prevention and treatment of infectious diseases should be emphasized.
Animals ; Cell Line ; Cell Proliferation ; drug effects ; Fatty Alcohols ; pharmacology ; Glycols ; pharmacology ; Inflammation ; immunology ; Male ; Rats ; Rats, Wistar ; Receptors, Leukotriene B4 ; antagonists & inhibitors ; physiology ; Synovial Membrane ; cytology ; immunology ; Tetrazoles ; pharmacology ; Th1-Th2 Balance
8.Inhibitory effects of mizolastine on substance P-induced production of leukotriene B4 and interleukin 5 in mouse skin.
Yi-na WANG ; Hong FANG ; Zong-li ZHOU ; Hang-ping YAO
Journal of Zhejiang University. Medical sciences 2006;35(2):224-227
OBJECTIVETo observe the inhibitory effect of mizolastine on substance P(SP)-induced production of leukotriene B(4) (LTB(4)) and interleukin 5 (IL-5) in mouse skin.
METHODSMice were fed with different doses of mizolastine or other control drugs, 30 min after administration animals were injected intradermally with SP on the back. The treated skin samples were taken and competitive enzyme-link immunoassay (ELISA) method was applied to detect LTB (4) and IL-5 in the skin samples.
RESULTThe LTB(4) and IL-5 levels in 10 mg/kg mizolastine group were (1.23 +/-0.29)pg/ml and (34.28 +/-11.00)pg/ml, respectively, which were lower than those in saline control group [(5.52+/-1.88)pg/ml and (179.62 +/-46.25)pg/ml respectively] or loratadine group [(3.89+/-1.27)pg/ml and (127.74 +/-43.27)pg/ml respectively]. No significant difference was found between 10 mg/kg mizolastine group and dexamethasone group (P=0.161 and P=0.508).
CONCLUSIONMizolastine might inhibit the production of LTB(4) and IL-5 induced by substance P in mouse skin, suggesting that anti-inflammatory effect and the blockade of histamine H1 receptors might be involved in its anti-pruritic mechanisms.
Animals ; Benzimidazoles ; pharmacology ; Female ; Histamine H1 Antagonists ; pharmacology ; Interleukin-5 ; biosynthesis ; Leukotriene B4 ; biosynthesis ; Male ; Mice ; Mice, Inbred BALB C ; Skin ; metabolism ; Substance P ; antagonists & inhibitors
9.Effect of shuanglong capsule on content of leukotrienes compound of lung tissues in asthmatic rats.
Zhi-hui YANG ; Jian-jun ZHANG ; Lin-yuan WANG
Chinese Journal of Integrated Traditional and Western Medicine 2006;26 Suppl():43-46
OBJECTIVETo observe the changing contents of leukotriene B4 ( LTB4 ), leukotriene C4 ( LTC4 ), and leukotriene D4 (LTD4 ) of lung tissue in asthmatic rats, and explore the effect of Shuanglong Capsule (SLC) on it.
METHODSSD rats were randomly divided into the nomal group, asthmatic model group, Dexamethasone group and the high, middle and low dose SLC groups. All rats except those in the normal group were sensitized by ovalbumin and challenged with the antigen, and the contents of LTB4, LTC4 and LTD4 in lung tissue of all the groups were measured by reverse phase-high performance liquid chromatography (RP-HPLC) and compared.
RESULTSThe levels of LTB4, LTC4, and LTD4 of asthmatic rats were significantly higher than those of rats in the normal group. Dexamethasone and SLC at the dose of 8. 27 g/kg or 4. 13 g/kg could significantly inhibit the production of leukotrienes of lung tissue in asthmatic rats (P <0.05).
CONCLUSIONSLC can significantly inhibit the formation of inflammatory medium LTs of lung tissue in asthmatic rats, it may be one of the key mechanisms of SLC in anti-asthma and anti-inflammatory action.
Animals ; Anti-Asthmatic Agents ; pharmacology ; Asthma ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Leukotriene B4 ; metabolism ; Leukotriene C4 ; metabolism ; Leukotriene D4 ; metabolism ; Leukotrienes ; metabolism ; Lung ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Tablets
10.Leukotriene B4 pathway regulates the fate of the hematopoietic stem cells.
Jin Woong CHUNG ; Geun Young KIM ; Yeung Chul MUN ; Ji Young AHN ; Chu Myong SEONG ; Jae Hong KIM
Experimental & Molecular Medicine 2005;37(1):45-50
Leukotriene B4(LTB4), derived from arachidonic acid, is a potent chemotactic agent and activating factor for hematopoietic cells. In addition to host defense in vivo, several eicosanoids have been reported to be involved in stem cell differentiation or proliferation. In this study, we investigated the effect of LTB4 on human cord blood CD34+ hematopoietic stem cells (HSCs). LTB4 was shown to induce proliferation of HSC and exert anti-apoptotic effect on the stem cells. Blockade of interaction between LTB4 and its receptor enhanced self-renewal of the stem cells. Effect of LTB4 on differentiation of CD34+ HSCs were confirmed by clonogenic assays, and induction of the expression of BLT2 (the low- affinity LTB4 receptor), during the ex vivo expansion was confirmed by reverse transcription-PCR. Our results suggest that LTB4-BLT2 interaction is involved in the cytokine-induced differentiation and ex vivo expansion of hematopoietic stem cells.
Antigens, CD34/metabolism
;
Apoptosis/drug effects
;
Cell Differentiation/drug effects
;
Cell Proliferation/drug effects
;
Fetal Blood/cytology/drug effects
;
Hematopoietic Stem Cells/*drug effects/metabolism
;
Humans
;
Leukotriene B4/*pharmacology
;
Receptors, Leukotriene B4/genetics/metabolism
;
Research Support, Non-U.S. Gov't
;
Reverse Transcriptase Polymerase Chain Reaction
;
*Signal Transduction

Result Analysis
Print
Save
E-mail