1.Expression Level of SOCS3 in Acute Lymphoblastic Leukemia Cells Affects the Cytotoxicity of NK Cells.
Bing TANG ; Yong-Ge LI ; Lin CHENG ; Hui-Bing DANG
Journal of Experimental Hematology 2022;30(2):400-406
		                        		
		                        			OBJECTIVE:
		                        			To detect the expression level of suppressors of cytokine signaling 3 (SOCS3) in acute lymphoblastic leukemia (ALL), and to observe the effect of over-expresson of SOCS3 in Jurkat cells on the cytotoxicity of NK cells.
		                        		
		                        			METHODS:
		                        			The expression levels of SOCS3 mRNA in peripheral blood mononuclear cells of 20 children with ALL and 20 healthy children (normal control group) were detected by RT-PCR. The peripheral blood NK cells from healthy subjects were selected by immunomagnetic technique, and the purity was detected by flow cytometry. SOCS3 was overexpressed in Jurkat cells infected with lentivirus vector, and SOCS3 mRNA expression was detected by RT-PCR after lentivirus infection. The NK cells were co-cultured with the infected Jurkat, and LDH release method was used to detect the cytotoxicity of NK cells on the infected Jurkat cells. The concentrations of TNF-α and IFN-γ were determined by ELISA. The expression of NKG2D ligands MICA and MICB on the surface of Jurkat cells were detected by flow cytometry. Western blot was used to detect the effect of SOCS3 overexpression on STAT3 phosphorylation in Jurkat cells.
		                        		
		                        			RESULTS:
		                        			Compared with the control group, the mRNA expression of SOCS3 in the peripheral blood mononucleated cells of ALL children was significantly decreased. The purity of NK cells isolated by flow cytometry could reach more than 70%. The expression of SOCS3 mRNA in Jurkat cells increased significantly after lentivirus infection. Overexpression of SOCS3 in Jurkat cells significantly promoted the killing ability of NK cells and up-regulated the secretion of TNF-α and IFN-γ from NK cells. The results of flow cytometry showed that the expression of NKG2D ligands MICA and MICB on Jurkat cells increased significantly after SOCS3 overexpression. Western blot results showed that overexpression of SOCS3 significantly reduced the phosphorylation level of STAT3 protein in Jurkat cells.
		                        		
		                        			CONCLUSION
		                        			SOCS3 mRNA expression was significantly decreased in ALL patients, and overexpression of SOCS3 may up-regulate the expression of MICA and MICB of NKG2D ligands on Jurkat cell surface through negative regulation of JAK/STAT signaling pathway, thereby promoting the cytotoxic function of NK cells.
		                        		
		                        		
		                        		
		                        			Child
		                        			;
		                        		
		                        			Histocompatibility Antigens Class I/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Killer Cells, Natural/cytology*
		                        			;
		                        		
		                        			Leukocytes, Mononuclear/cytology*
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			NK Cell Lectin-Like Receptor Subfamily K/metabolism*
		                        			;
		                        		
		                        			Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
		                        			;
		                        		
		                        			RNA, Messenger/genetics*
		                        			;
		                        		
		                        			Suppressor of Cytokine Signaling 3 Protein/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			
		                        		
		                        	
2.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
		                        		
		                        			
		                        			Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Asthma
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Astragalus propinquus
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Budesonide
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunologic Factors
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Leukocytes, Mononuclear
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Swine
		                        			;
		                        		
		                        			T-Lymphocytes, Regulatory
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Terbutaline
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Th17 Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Treatment Outcome
		                        			
		                        		
		                        	
3.Effects of ATP on expression of inflammatory factors in endothelial progenitor cells induced by LPS and the mechanisms.
Bolin XIAO ; Meifang CHEN ; Mei YANG ; Zhilin XIAO
Journal of Central South University(Medical Sciences) 2018;43(12):1301-1308
		                        		
		                        			
		                        			To investigate the effects of adenosine triphosphate (ATP) on expression of inflammatory factors induced by lipopolysaccharide (LPS) in endothelial progenitor cells (EPCs), and to elucidate the possible mechanisms.
 Methods: Mononuclear cells were isolated from human umbilical cord blood by density gradient centrifugation, RT-PCR was performed to detect the expression of inflammatory factors induced by LPS (1 mg/mL) in EPCs, the effect of low concentration (5 μmol/L) of ATP on expression of IL-1β, MCP-1 and ICAM-1, and the effect of different concentrations (5, 50 μmol/L) of ATP on the expression of Toll-like receptor (TLR) 4, myeloid differentiation primary response protein 88 (MyD88) and CD14. Western blot was performed to detect expression of TLR4 regulated proteins MyD88 and CD14 or to detect the low concentration (1, 5 μmol/L) of ATP on the expression of TLR4, MyD88 and CD14 and the NF-κB signaling pathway.
 Results: EPCs highly expressed TLR4, and its ligand LPS (1 mg/mL) significantly upregulated mRNA expression of IL-1β, MCP-1 and ICAM-1 and protein expression of MyD88 and CD14 in a time-dependent manner (P<0.01), accompanied by activation of ERK and NF-κB signal pathway. ATP at low concentration (5 μmol/L) significantly inhibited LPS-induced mRNA expression of IL-1β, MCP-1 and ICAM-1(P<0.05), downregulated the LPS-induced protein expression of TLR4, MyD88 and CD14 in EPCs (P<0.05), and suppressed LPS-induced activation of NF-κB signaling pathway (P<0.05).
 Conclusion: ATP at low concentration may suppress LPS-induced expression of inflammatory factors in EPCs through negative regulation of the TLR4 signaling pathway.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Endothelial Progenitor Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukocytes, Mononuclear
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Lipopolysaccharide Receptors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Toll-Like Receptor 4
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
4.Comparsion between Intravenous Delivered Human Fetal Bone Marrow Mesenchymal Stromal Cells and Mononuclear Cells in the Treatment of Rat Cerebral Infarct.
Ai-Hua HUANG ; Ping-Ping ZHANG ; Bin ZHANG ; Bu-Qing MA ; Yun-Qian GUAN ; Yi-Dan ZHOU
Acta Academiae Medicinae Sinicae 2016;38(5):497-506
		                        		
		                        			
		                        			Objective To compare the effecacy of human mesenchymal stromal cell (hMSC) with human mononuclear cell (hMNC) in treating rat cerebral infarct.Methods The SD rat models of cerebral infarct were established by distal middle cerebral artery occlusion (dMCAO). Rats were divided into four groups: sham,ischemia vehicle,MSC,and MNC transplantation groups. For the transplantation group,1×10hMSCs or hMNCs were intravascularly transplanted into the tail vein 1 hour after the ischemia onset. The ischemia vehicle group received dMCAO surgery and intravascular saline injection 1,3,5,and 7 days after the ischemia onset,and then behavioral tests were performed. At 48 h after the ischemia onset,the abundance of Iba- 1,the symbol of activated microglia,was evaluated in the peri-ischemia striatum area; meanwhile,the neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in ipsilateral peri-ischemia striatum area were also measured. Results The relative infarct volume in ischemia vehicle group,hMSC group,and hMNC transplantation group were (37.85±4.40)%,(33.41±3.82)%,and (30.23±3.63)%,respectively. The infarct volumes of MSC group (t=2.100,P=0.034) and MNC group (t=2.109,P=0.0009) were significantly smaller than that of ischemia vehicle group,and that of MNC group was significantly smaller than that of MSC group (t=1.743,P=0.043). One day after transplantation,the score of ischemia vehicle group in limb placing test was (4.32±0.71)%,which was significantly lower than that in sham group (9.73±0.36)% (t=2.178,P=8.61×10). The scores of MSC and MNC group,which were (5.09±0.62)% (t=2.1009,P=0.024) and (5.90±0.68)% (t=2.1008,P=0.0001),respectively,were significantly higher than that of ischemia vehicle group; also,the score of MNC group was significantly higher than that of MSC group(t=2.1009,P=0.0165). The contralateral forelimb scores of MSC and MNC groups in beam walking test were (5.56±0.86)% (t=2.120,P=0.020) and (5.13±0.95)% (t=2.131,P=0.003),were both significantly lower than that of ischemia vehicle group [(6.47±0.61)%]. Three days after the transplantation,the limb placing test score of MNC group [(6.91±1.10)%] was significantly higher than that of ischemia vehicle group (5.80±0.82)% (t=2.110,P=0.027). The score of MSC group [(6.30±0.77)%] showed no statistic difference with that of ischemia vehicle group(t=2.101,P=0.199).The contralateral forelimb scores of MNC group in beam walking test [(4.34±0.58)%] was significantly lower than that of ischemia vehicle group [(5.31±0.65)%] (t=2.100,P=0.006) and MSC group [(4.92±0.53)%] (t=2.100,P=0.041); there was no statistic difference between MSC group and ischemia vehicle group (t=2.109,P=0.139). The relative abundance of Iba- 1 in sham,ischemia vehicle,MSC,and MNC groups was 1.00+0.00,1.72±0.21,1.23±0.08,and 1.48±0.06,respectively. The Iba-1 relative abundance of ischemia vehicle group was significantly higher than that of sham group (t=2.262,P=2.9×10). The Iba-1 relative abundances of both MSC (t=2.178,P=3.91×10)and MNC (t=2.200,P=0.007)groups were significantly lower than that of ischemia vehicle group. It was also significantly lower in MNC group than in MSC group also (t=2.120,P=7.09×10). Three days after transplantation,the BDNF and GDNF levels of MSC group,which were (531.127±73.176)pg/mg (t=2.109,P=0.003)and(127.780±16.733)pg/mg(t=2.100,P=2.76×10),respectively,were significantly higher than those of ischemia vehicle group,which were (401.988±89.006)pg/mg and (86.278±14.832) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (627.429±65.646)pg/mg (t=2.144,P=0.017) and (153.117±20.443)pg/mg (t=2.109,P=0.010),respectively,were all significantly higher than that of MSC group. At day 7,the BDNF and GDNF levels of MSC group,which were (504.776±83.282)pg/mg (t=2.101,P=0.005) and (81.641±11.019)pg/mg (t=2.100,P=0.002),respectively,were significantly higher than those of ischemia vehicle group,which were (389.257±70.440)pg/mg and (64.322±9.855) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (589.068±63.323)pg/mg (t=2.100,P=0.027) and (102.161±19.932)pg/mg (t=2.144,P=0.017),respectively,were all significantly higher than that of MSC group. Conclusions Both hMSC and hMNC are beneficial to the ischemia-damaged brain when they are intravascularly transplanted within 1 h after the onset of ischemia. The anti-inflammation ability and secretion of neurotrophic factors are the underlying mechanisms of the therapeutic effects. MNC is more effective than MSC in reducing infarct area and improving behaviors,which might be explained by the fact that MNC induces more GDNF and BDNF in brain than MSC.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Marrow
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Fetus
		                        			;
		                        		
		                        			Glial Cell Line-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Leukocytes, Mononuclear
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			
		                        		
		                        	
5.Role of Imbalance between Th17 Cells and Treg Cells in the Pathogenesis of Children with Henoch-Schonlein Purpura.
Qiang WANG ; Yang-Yi SHI ; Mei CAO ; Wei DONG ; Jian-Bo ZHANG
Journal of Experimental Hematology 2015;23(5):1391-1396
OBJECTIVETo explore the role of Th17 cells, CD4⁺ CD25⁺ regulatory Treg cells (Treg) and its transcription factor RORγt and FoxP3 in the pathogenesis of children with Henoch-Schonlein purpura (HSP) so as to provide a new strategy for treatment of children with Henoch-Schonlein purpura by regulating the balance of Th17 and Treg cells.
METHODSForty children with Henoch-Schonlein purpura in acute phase admitted in our hospital from February 2012 to March 2013 were enrolled in this study, forty healthy children were simultaneously used as controls. The expression of RORγt mRNA and FoxP3 mRNA in peripheral blood mononuclear cells was detected by real-time PCR using SYBR Green I. The levels of IL-17A, TGF-β1, IL-2 and IL-6 in serum were measured by ABC-ELISA. The ratio of Th17 cells to Treg cells in peripheral blood T lymphocytes was detected by flow cytometry.
RESULTSThe levels of Th17 cells (2.75 ± 0.60%) and RORγt mRNA (1.11 ± 0.51) in HSP group were significantly higher than levels of Th17 cells (1.41 ± 0.29%) and RORγt mRNA (0.65 ± 0.24) (P < 0.01) in control group, but the levels of Treg cells (4.56 ± 1.26%) and FoxP3 mRNA (1.15 ± 0.45) in HSP group were lower than those of Treg cells (7.85 ± 1.97%) and FoxP3 mRNA (2.32 ± 1.1) (P < 0.01) in the control group. The relative levels of serum IL-17A, IL-6, TGF-β1 (40.40 ± 11.81 pg/ml, 75.38 ± 27.19 pg/ml, 309.41 ± 81.03 pg/ml) in the HSP group were significantly higher than those in the control group [IL-17A (20.32 ± 10.70 pg/ml), IL-6 (25.16 ± 8.31 pg/ml), TGF-β1 (236.34 ± 66.01 pg/ml)] (P < 0.01), but the level of serum IL-2 (25.60 ± 13.19 pg/ml) in the HSP group was lower than that (34.42 ± 11.69 pg/ml) in the control group (P < 0.01). The further detection demonstrated that in the children with acute HSP, the expression of Th17 cells positively correlated with RORγt mRNA, IL-17A and IL-6 with the correlation coefficients of 0.887, 0.938 and 0.934 (P < 0.01), respectively. The positive correlation was also shown between the Treg cells and FoxP3 mRNA, IL-2 with the correlation coefficients of 0.834 and 0.932 (P < 0.01), respectively.
CONCLUSIONThere are higher expression levels of Th17 cells, RORγt mRNA and IL-17A, and lower expression levels of Treg cells, FoxP3 mRNA of children with HSP in acute phase, which shows that Th17/Treg imbalance exists in children with HSP in acute phase. The levels of serum IL-6, TGF-β1 increase and the serum IL-2 decrease in children with HSP in acute phase, moreover, there are the positive correlations between the levels of Th17 cells and expression of IL-6, as well as the level of Treg cells and expression of IL-2 in children with HSP in acute phase.
Case-Control Studies ; Child ; Flow Cytometry ; Forkhead Transcription Factors ; metabolism ; Humans ; Interleukin-17 ; blood ; Interleukin-2 ; blood ; Interleukin-6 ; blood ; Leukocytes, Mononuclear ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; metabolism ; Purpura, Schoenlein-Henoch ; immunology ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; T-Lymphocytes, Regulatory ; cytology ; Th17 Cells ; cytology ; Transforming Growth Factor beta1 ; blood
6.Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.
Bin YU ; Cong-qi DAI ; Zhen-you JIANG ; En-qing LI ; Chen CHEN ; Xian-lin WU ; Jia CHEN ; Qian LIU ; Chang-lin ZHAO ; Jin-xiong HE ; Da-hong JU ; Xiao-yin CHEN
Chinese journal of integrative medicine 2014;20(7):540-545
OBJECTIVETo observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1.
METHODSLeukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR).
RESULTSThe optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05).
CONCLUSIONSThe RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Antiviral Agents ; pharmacology ; Cells, Cultured ; Coculture Techniques ; DEAD Box Protein 58 ; DEAD-box RNA Helicases ; genetics ; metabolism ; Dendritic Cells ; drug effects ; immunology ; virology ; Diterpenes ; pharmacology ; Fetal Blood ; cytology ; Humans ; Influenza A Virus, H1N1 Subtype ; drug effects ; immunology ; Influenza, Human ; drug therapy ; immunology ; virology ; Interferon-beta ; genetics ; metabolism ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Leukocytes, Mononuclear ; drug effects ; immunology ; virology ; Macrophages ; drug effects ; virology ; NF-kappa B ; genetics ; metabolism ; Promoter Regions, Genetic ; drug effects ; immunology ; RNA, Messenger ; metabolism ; Signal Transduction ; drug effects ; genetics ; immunology
7.Biological characteristics of exosomes secreted by human bone marrow mesenchymal stem cells.
Ying FENG ; Shi-Hong LU ; Xin WANG ; Jun-Jie CUI ; Xue LI ; Wen-Jing DU ; Ying WANG ; Juan-Juan LI ; Bao-Quan SONG ; Fang CHEN ; Feng-Xia MA ; Ying CHI ; Shao-Guang YANG ; Zhong-Chao HAN
Journal of Experimental Hematology 2014;22(3):595-599
		                        		
		                        			
		                        			This study was aimed to explore the immunoregulatory function and capability supporting the angiogenesis of exosomes secreted by bone marrow mesenchymal stem cells (BMMSC) from healthy persons. Supernatant of BMMSC (P4-P6) was collected for exosome purification. Transmission electron microscopy (TEM) and Western blot were used to identify the quality of isolated exosomes. The amount of exosomes was quantified through bicinchoninic acid (BCA) protein assay. Human peripheral blood mononuclear cells (PBMNC) were isolated from healthy donor and added with isolating exosomes. After co-cultured for 72 h, IFN-γ from the co-culture system was detected by ELISA. The expression of miRNA-associated with immunity were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). The interactions between exosomes and human umbilical vein endothelial cells (HUVEC) were observed with confocal microscopy. Subconfluent HUVEC were harvested and treated with the indicated concentration of exosomes. Nude mice were injected subcutaneously with exosomes or PBS as control to verify the ability of angiogenesis. The results showed that diameter range of exosomes was range from 40 to 160 nm. The isolated exosomes expressed the CD9. There was approximately linear relation between the secretion of exosomes and cell density. The exosomes suppressed the production of IFN-γ from PBMNC, and contained miRNA associated with immune regulation such as miR301, miR22 and miR-let-7a. Exosomes induced vascular tube formation in vitro and vascularization of Matrigel plugs in vivo. It is concluded that the BMMSC-derived exosomes can regulate immunity and support vascularization.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Marrow Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Exosomes
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interferon-gamma
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leukocytes, Mononuclear
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Neovascularization, Physiologic
		                        			
		                        		
		                        	
8.Effect of Human Parathyroid Hormone on Hematopoietic Progenitor Cells in NOD/SCID Mice Co-Transplanted with Human Cord Blood Mononuclear Cells and Mesenchymal Stem Cells.
Yeon Jung LIM ; Kyoujung HWANG ; Miyeon KIM ; Youl Hee CHO ; Jong Hwa LEE ; Young Ho LEE ; Jong Jin SEO
Yonsei Medical Journal 2013;54(1):238-245
		                        		
		                        			
		                        			PURPOSE: We evaluated the effect of human parathyroid hormone (hPTH) on the engraftment and/or in vivo expansion of hematopoietic stem cells in an umbilical cord blood (UCB)-xenotransplantation model. In addition, we assessed its effect on the expression of cell adhesion molecules. MATERIALS AND METHODS: Female NOD/SCID mice received sublethal total body irradiation with a single dose of 250 cGy. Eighteen to 24 hours after irradiation, 1x107 human UCB-derived mononuclear cells (MNCs) and 5x106 human UCB-derived mesenchymal stem cells (MSCs) were infused via the tail vein. Mice were randomly divided into three groups: Group 1 mice received MNCs only, Group 2 received MNCs only and were then treated with hPTH, Group 3 mice received MNCs and MSCs, and were treated with hPTH. RESULTS: Engraftment was achieved in all the mice. Bone marrow cellularity was approximately 20% in Group 1, but 70-80% in the hPTH treated groups. Transplantation of MNCs together with MSCs had no additional effect on bone marrow cellularity. However, the proportion of human CD13 and CD33 myeloid progenitor cells was higher in Group 3, while the proportion of human CD34 did not differ significantly between the three groups. The proportion of CXCR4 cells in Group 3 was larger than in Groups 1 and 2 but without statistical significance. CONCLUSION: We have demonstrated a positive effect of hPTH on stem cell proliferation and a possible synergistic effect of MSCs and hPTH on the proportion of human hematopoietic progenitor cells, in a xenotransplantation model. Clinical trials of the use of hPTH after stem cell transplantation should be considered.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Marrow/metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fetal Blood/*cytology
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Hematopoietic Stem Cell Transplantation
		                        			;
		                        		
		                        			Hematopoietic Stem Cells/*drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukocytes, Mononuclear/*cytology
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells/*cytology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred NOD
		                        			;
		                        		
		                        			Mice, SCID
		                        			;
		                        		
		                        			Parathyroid Hormone/*therapeutic use
		                        			;
		                        		
		                        			Stem Cells/cytology
		                        			;
		                        		
		                        			Transplantation, Heterologous
		                        			
		                        		
		                        	
9.Inhibitory effect of human umbilical cord-derived mesenchymal stem cells on interleukin-17 production in peripheral blood T cells from spondyloarthritis patients.
Zhi-Fang HUANG ; Jian ZHU ; Shuang-Hong LU ; Jiang-Lin ZHANG ; Xian-Da CHEN ; Li-Xin DU ; Zhi-Gang YANG ; Ya-Kun SONG ; Dong-Ying WU ; Bing LIU ; Feng HUANG
Journal of Experimental Hematology 2013;21(2):455-459
		                        		
		                        			
		                        			In this study, the inhibitory effect of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on interleukin-17 (IL-17) production in peripheral blood T cells from patients with spondyloarthritis (SpA) were investigated, in order to explore the therapeutic potential of hUCMSC in the SpA. Peripheral blood mononuclear cells (PBMNC) were isolated from patients with SpA (n = 12) and healthy subjects (n = 6). PBMNC were cultured in vitro with hUCMSC or alone. The expression of IL-17 in CD4(+) T cells or γ/δ T cells were determined in each subject group by flow cytometry. IL-17 concentrations in PBMNC culture supernatants were measured by ELISA. The results indicated that the proportion of IL-17-producing CD4(+) T cells and IL-17-producing γ/δ T cells of SpA patients were 4.5 folds and 5 folds of healthy controls [CD3(+)CD4(+)IL-17(+) cells (3.42 ± 0.82)% vs (0.75 ± 0.25)%, P < 0.01; CD3(+)γδTCR(+)IL-17(+) cells (0.30 ± 0.10)% vs (0.06 ± 0.02)%, P < 0.01]. After co-culture of PBMNC in patients with hUCMSC, the increased proportions of CD3(+)CD4(+)IL-17(+) cells and CD3(+)γδTCR(+)IL-17(+) cells in SpA patients were inhibited significantly by hUCMSC [CD3(+)CD4(+)IL-17(+) cells (3.42 ± 0.82)% vs (1.81 ± 0.59)% (P < 0.01); CD3(+)γδTCR(+)IL-17(+) cells (0.30 ± 0.10)% vs (0.16 ± 0.06)% (P < 0.01]. In response to phytohemagglutinin (PHA, 1 µg/ml), PBMNC from SpA patients secreted more IL-17 than that from healthy control [(573.95 ± 171.68) pg/ml vs (115.53 ± 40.41) pg/ml (P < 0.01)]. In the presence of hUCMSC, PBMNC of SpA patients produced less amount of IL-17 [(573.95 ± 171.68) pg/ml vs (443.20 ± 147.94) pg/ml, (P < 0.01)]. It is concluded that the IL-17 production in peripheral blood T cells from SpA patients can be inhibited by hUCMSC, which have therapeutic potential for SpA.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-17
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leukocytes, Mononuclear
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Lymphocyte Count
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells
		                        			;
		                        		
		                        			Spondylarthritis
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Umbilical Cord
		                        			;
		                        		
		                        			cytology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail