1.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
2.Effects of Down-regulation of NCL Expression on the Biological Behavior of Acute Myeloid Leukemia Kasumi-1 Cells.
Hui-Li LIU ; Wen-Xin XU ; Yang-Yan CAI ; Hong-Mei LI
Journal of Experimental Hematology 2025;33(5):1312-1317
OBJECTIVE:
To investigate the role of nucleolin (NCL) in acute myeloid leukemia (AML) Kasumi-1 cells and its underlying mechanism.
METHODS:
The Kasumi-1 cells were infected with lentivirus carrying shRNA to downregulate NCL expression. Cell proliferation was detected by CCK-8 assay, and cell apoptosis and cell cycle were determined by flow cytometry. Transcriptome next-generation sequencing (NGS) was performed to predict associated signaling pathways, the expression levels of related genes were measured by RT-PCR.
RESULTS:
Down-regulation of NCL expression significantly inhibited the proliferation of Kasumi-1 cells (P <0.01) and markedly increased the apoptosis rate (P <0.001). Cell cycle analysis showed significant changes in the distribution of cells in the G1 and S phases after NCL knockdown (P <0.05), while no significant difference was observed in the G2 phase (P >0.05). Transcriptome sequencing analysis demonstrated that differentially expressed genes in Kasumi-1 cells with low expression of NCL were primarily enriched in key signaling pathways, including ribosome, spliceosome, RNA transport, cell cycle, and amino acid biosynthesis. qPCR validation showed that the expression of BAX, CASP3, CYCS, PMAIP1, TP53 , and CDKN1A was significantly upregulated after NCL downregulation (P <0.05), with CDKN1A exhibiting the most pronounced difference.
CONCLUSION
NCL plays a critical role in regulating the proliferation, apoptosis, and cell cycle progression of Kasumi-1 cells. The mechanism likely involves suppressing cell cycle progression through activation of the TP53-CDKN1A pathway and promoting apoptosis by upregulating apoptosis-related genes.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Down-Regulation
;
Cell Proliferation
;
Apoptosis
;
RNA-Binding Proteins/genetics*
;
Nucleolin
;
Cell Line, Tumor
;
Phosphoproteins/metabolism*
;
Cell Cycle
;
Signal Transduction
;
RNA, Small Interfering
3.miR-181b-5p promotes cell proliferation and induces apoptosis in human acute myeloid leukemia by targeting PAX9.
Bin LI ; Qianshan TAO ; Xueying HU ; Tan LI ; Yangyi BAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1074-1082
Objective To investigate the effects of miR-181b-5p on cells proliferation and apoptosis in acute myeloid leukemia (AML) by targeting paired box 9 (PAX9). Methods The relationship between expression level of PAX9 and prognosis in AML patients was analyzed by gene expression profiling interactive analysis (GEPIA) database and The Cancer Genome Atlas (TCGA) database. Kasumi-1 and AML5 cells were transfected with empty vector (Vector group) or PAX9 (PAX9 group). The proliferation activity was detected by CCK-8 assay, and cells cycle and apoptosis were detected by flow cytometry. Expressions of cyclin-dependent kinase 2 (CDK2), cyclin B1 (CCNB1), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (BAX) were detected by Western blot analysis. The targeted microRNA (miRNA) by PAX9 was predicted by bioinformatics analysis, and the targeted effect was verified by luciferase reporter assay. The level of PAX9 mRNA was detected by real-time quantitative PCR, and expression of PAX9 protein was detected by Western blot analysis. Kasumi-1 and AML5 cells were transfected with miR-NC (miR-NC group) or miR-181b-5p (miR-181b-5p group). The cells were further transfected with PAX9 (miR-181b-5p combined with PAX9 group) in miR-181b-5p group. The proliferation, cycle and apoptosis of cells were detected by the above methods.Results GEPIA and TCGA databases showed that the expression of PAX9 was down-regulated in AML patients, which was correlated with poor prognosis. In Kasumi-1 and AML5 cells, compared with Vector group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in PAX9 group. It was confirmed by double luciferase reporter assay that PAX9 was the target gene of miR-181b-5p. Compared with miR-NC group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were increased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were decreased in miR-181b-5p group. Compared with miR-181b-5p group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in miR-181b-5p combined with PAX9 group. Conclusion The miR-181b-5p can promote the proliferation of AML cells and delay apoptosis by inhibiting PAX9.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Leukemia, Myeloid, Acute/pathology*
;
Luciferases
;
MicroRNAs/metabolism*
;
PAX9 Transcription Factor/genetics*
4.A Novel KIT INDEL Mutation in Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1.
Jun Hyung LEE ; Chungoo PARK ; Soo Hyun KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(4):371-374
No abstract available.
Adult
;
Amino Acid Sequence
;
Bone Marrow/metabolism/pathology
;
Chromosomes, Human, Pair 21
;
Chromosomes, Human, Pair 8
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
Exons
;
Female
;
Humans
;
INDEL Mutation
;
Leukemia, Myeloid, Acute/*genetics/pathology
;
Multiplex Polymerase Chain Reaction
;
Proto-Oncogene Proteins/*genetics
;
Proto-Oncogene Proteins c-kit/*genetics
;
Transcription Factors/*genetics
;
*Translocation, Genetic
5.Role of Rheb in Human Acute Myeloid Leukemia.
Xiao-Min WANG ; Qiao-Zhu XU ; Ya-Nan GAO ; Juan GAO ; Ming-Hao LI ; Wan-Zhu YANG ; Jiang-Xiang WANG ; Wei-Ping YUAN
Journal of Experimental Hematology 2016;24(3):662-666
OBJECTIVETo investigate the role of Rheb (mTOR activator) in AML development by measuring Rheb expression in bone marrow of adult AML patients and in AML cell line HL-60.
METHODSReal-time PCR assay was used to measure the Rheb mRNA expression in 27 AML patients and 29 ITP patients as control. The relationship between Rheb mRNA expression and age, AML subtype, fusion gene, splenomegaly, hepatomegaly and survival of AML patients was analyzed and compared. In addition, HL-60 cell line over-expressing Rheb was established, and the HL-60 cells and HL-60 cells with overexpression of Rheb were treated with Ara-C of different concentrations, the proliferation level was detected by CCK-8 method, and the IC50 was calculated.
RESULTSThe mRNA level of Rheb in AML patients was similar to that in ITP patients (control). Interestingly, higher expression of Rheb was associated with better survival and was sensitive to Ara-C treatment. However, the expression level of Rheb was not associated with age, AML subtype, fusion gene, and hepatomegaly of patients. Lower expression level of Rheb was associated with splenomegaly. In vitro analysis of HL-60 line indicated that overexpression of Rheb could increased the cell sensitivity to Ara-C treatment (IC50=0.54 µmol/L) and caused HL-60 cell apoptosis.
CONCLUSIONThe lower Rheb expression is a poor prognostic indicator for AML patients, which is associated with AML splenomegaly, the patients and HL-60 cells with low expression of Rheb are insensitive to Ara-C treatment.
Adult ; Apoptosis ; Bone Marrow ; metabolism ; Cytarabine ; pharmacology ; HL-60 Cells ; Humans ; Leukemia, Myeloid, Acute ; genetics ; metabolism ; pathology ; Monomeric GTP-Binding Proteins ; genetics ; metabolism ; Neuropeptides ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Ras Homolog Enriched in Brain Protein ; Real-Time Polymerase Chain Reaction ; Spleen ; pathology
6.MiR-181a Promotes Proliferation of Human Acute Myeloid Leukemia Cells by Targeting ATM.
Jia-Ye HUA ; Ying FENG ; Ying PANG ; Xu-Hong ZHOU ; Bing XU ; Mu-Xia YAN
Journal of Experimental Hematology 2016;24(2):347-351
OBJECTIVETo investigate miR-181a function and regulation mechanism by identifying miR-181a target genes in acute myeloid leukemia (AML).
METHODSThe HL-60 cells of human AML was transfected by small molecular analog miR-181a, the cell proliferation was detected by CCK-8 method after electroporation in HL-60 cell lines. Target genes of miR-181a were predicted and analyzed by the bioinformatics software and database. Target genes were confirmed by HL-60 cell line and the patient leukemia cells.
RESULTSOverexpressed miR-181a in HL-60 cell line significantly enhanced cell proliferation compared with that in control (P < 0.05). Dual luciferase reporter gene assay showed that miR-181a significantly suppressed the reporter gene activity containing ATM 3'-UTR by about 56.8% (P < 0.05), but it didn't suppress the reporter gene activity containing 3'-UTR ATM mutation. Western blot showed that miR-181a significantly downregulated the expression of ATM in human leukemia cells. It is also found that miR-181a was significantly increased in AML, which showed a negative correlation with ATM expression.
CONCLUSIONmiR-181a promotes cell proliferation in AML by regulating the tumor suppressor ATM, thus it plays the role as oncogene in pathogenesis of AML.
Ataxia Telangiectasia Mutated Proteins ; metabolism ; Cell Proliferation ; Down-Regulation ; HL-60 Cells ; Humans ; Leukemia, Myeloid, Acute ; metabolism ; pathology ; MicroRNAs ; genetics ; metabolism ; Transfection
7.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
No abstract available.
Adult
;
Antigens, CD4/*metabolism
;
Antigens, CD56/*metabolism
;
Bone Marrow/metabolism/pathology
;
Dendritic Cells/cytology/*metabolism
;
Diagnostic Errors
;
Exons
;
Female
;
Flow Cytometry
;
Gene Rearrangement
;
Hematologic Neoplasms/diagnosis
;
Histone-Lysine N-Methyltransferase/genetics
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/*diagnosis
;
Male
;
Middle Aged
;
Myeloid-Lymphoid Leukemia Protein/genetics
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Transcription Factors/genetics
;
Translocation, Genetic
8.Correlation of NPM1 Type A Mutation Burden With Clinical Status and Outcomes in Acute Myeloid Leukemia Patients With Mutated NPM1 Type A.
Su Yeon JO ; Sang Hyuk PARK ; In Suk KIM ; Jongyoun YI ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Young Uk CHO ; Seongsoo JANG ; Chan Jeoung PARK ; Hyun Sook CHI
Annals of Laboratory Medicine 2016;36(5):399-404
BACKGROUND: Nucleophosmin gene (NPM1) mutation may be a good molecular marker for assessing the clinical status and predicting the outcomes in AML patients. We evaluated the applicability of NPM1 type A mutation (NPM1-mutA) quantitation for this purpose. METHODS: Twenty-seven AML patients with normal karyotype but bearing the mutated NPM1 were enrolled in the study, and real-time quantitative PCR of NPM1-mutA was performed on 93 bone marrow (BM) samples (27 samples at diagnosis and 56 at follow-up). The NPM1-mutA allele burdens (represented as the NPM1-mutA/Abelson gene (ABL) ratio) at diagnosis and at follow-up were compared. RESULTS: The median NPM1-mutA/ABL ratio was 1.3287 at diagnosis and 0.092 at 28 days after chemotherapy, corresponding to a median log10 reduction of 1.7061. Significant correlations were observed between BM blast counts and NPM1-mutA quantitation results measured at diagnosis (γ=0.5885, P=0.0012) and after chemotherapy (γ=0.5106, P=0.0065). Total 16 patients achieved morphologic complete remission at 28 days after chemotherapy, and 14 (87.5%) patients showed a >3 log10 reduction of the NPM1-mutA/ABL ratio. The NPM1-mutA allele was detected in each of five patients who had relapsed, giving a median increase of 0.91-fold of the NPM1-mutA/ABL ratio at relapse over that at diagnosis. CONCLUSIONS: The NPM1-mutA quantitation results corresponded to BM assessment results with high stability at relapse, and could predict patient outcomes. Quantitation of the NPM1-mutA burden at follow-up would be useful in the management of AML patients harboring this gene mutation.
Antineoplastic Agents/therapeutic use
;
Bone Marrow/metabolism/pathology
;
Cytarabine/therapeutic use
;
Daunorubicin
;
Humans
;
Karyotype
;
Leukemia, Myeloid, Acute/drug therapy/genetics/*pathology
;
Mutation
;
Nuclear Proteins/*genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Recurrence
;
Remission Induction
;
Retrospective Studies
;
Sequence Analysis, DNA
;
fms-Like Tyrosine Kinase 3/genetics
9.Minor BCR-ABL1-Positive Acute Myeloid Leukemia Associated With the NPM1 Mutation and FLT3 Internal Tandem Duplication.
Moon Jung KIM ; Sunhyun AHN ; Seong Hyun JEONG ; Ja Hyun JANG ; Jae Ho HAN ; Jong Rak CHOI ; Sung Ran CHO
Annals of Laboratory Medicine 2016;36(3):263-265
No abstract available.
Aged
;
Base Sequence
;
Bone Marrow/metabolism/pathology
;
DNA Mutational Analysis
;
Female
;
Fusion Proteins, bcr-abl/*genetics
;
Gene Duplication
;
Humans
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/diagnosis/*genetics
;
Multiplex Polymerase Chain Reaction
;
Mutation
;
Nuclear Proteins/*genetics
;
Philadelphia Chromosome
;
fms-Like Tyrosine Kinase 3/*genetics
10.Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia.
Min Gu KANG ; Yu Na KIM ; Jun Hyung LEE ; Michael SZARDENINGS ; Hee Jo BAEK ; Hoon KOOK ; Hye Ran KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(2):101-110
BACKGROUND: To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. METHODS: Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. RESULTS: mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. CONCLUSIONS: The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML.
Bone Marrow Cells/metabolism
;
Case-Control Studies
;
Child
;
Cohort Studies
;
DNA, Mitochondrial/chemistry/genetics/metabolism
;
Female
;
Flow Cytometry
;
Gene Deletion
;
Gene Dosage
;
*Genome, Mitochondrial
;
Humans
;
Leukemia, Myeloid, Acute/genetics/mortality/*pathology
;
Male
;
Membrane Potential, Mitochondrial
;
Minisatellite Repeats/genetics
;
Odds Ratio
;
Reactive Oxygen Species/metabolism
;
Sequence Analysis, DNA
;
Survival Rate

Result Analysis
Print
Save
E-mail