1.Peripheral Leptin Signaling Mediates Formalin-Induced Nociception.
Zhi-Jing HU ; Wei HAN ; Chang-Qing CAO ; Qi-Liang MAO-YING ; Wen-Li MI ; Yan-Qing WANG
Neuroscience Bulletin 2018;34(2):321-329
Accumulating evidence suggests that obesity is associated with chronic pain. However, whether obesity is associated with acute inflammatory pain is unknown. Using a well-established obese mouse model induced by a high-fat diet, we found that: (1) the acute thermal pain sensory threshold did not change in obese mice; (2) the model obese mice had fewer nociceptive responses in formalin-induced inflammatory pain tests; restoring the obese mice to a chow diet for three weeks partly recovered their pain sensation; (3) leptin injection induced significant phosphorylation of STAT3 in control mice but not in obese mice, indicating the dysmodulation of topical leptin-leptin receptor signaling in these mice; and (4) leptin-leptin receptor signaling-deficient mice (ob/ob and db/db) or leptin-leptin receptor pathway blockade with a leptin receptor antagonist and the JAK2 inhibitor AG 490 in wild-type mice reduced their nociceptive responses in formalin tests. These results indicate that leptin plays a role in nociception induced by acute inflammation and that interference in the leptin-leptin receptor pathway could be a peripheral target against acute inflammatory pain.
Animals
;
Diet, High-Fat
;
adverse effects
;
Inflammation
;
chemically induced
;
metabolism
;
Leptin
;
metabolism
;
pharmacology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Nociception
;
drug effects
;
physiology
;
Nociceptive Pain
;
etiology
;
metabolism
;
Obesity
;
complications
;
metabolism
;
Pain Measurement
;
Pain Threshold
;
drug effects
;
physiology
;
Receptors, Leptin
;
metabolism
;
Signal Transduction
;
drug effects
;
physiology
2.Acupuncture Improves Intestinal Absorption of Iron in Iron-deficient Obese Patients: A Randomized Controlled Preliminary Trial.
Xin-Cai XIE ; Yan-Qiang CAO ; Qian GAO ; Chen WANG ; Man LI ; Shou-Gang WEI
Chinese Medical Journal 2017;130(5):508-515
BACKGROUNDObesity has an adverse effect on iron status. Hepcidin-mediated inhibition of iron absorption in the duodenum is a potential mechanism. Iron-deficient obese patients have diminished response to oral iron therapy. This study was designed to assess whether acupuncture could promote the efficacy of oral iron supplementation for the treatment of obesity-related iron deficiency (ID).
METHODSSixty ID or ID anemia (IDA) patients with obesity were screened at Beijing Hospital of Traditional Chinese Medicine and were randomly allocated to receive either oral iron replacement allied with acupuncture weight loss treatment (acupuncture group, n = 30) or oral iron combined with sham-acupuncture treatment (control group, n = 30). Anthropometric parameters were measured and blood samples were tested pre- and post-treatment. Differences in the treatment outcomes of ID/IDA were compared between the two groups.
RESULTSAfter 8 weeks of acupuncture treatment, there was a significant decrease in body weight, body mass index, waist circumference, and waist/hip circumference ratio of patients in the acupuncture group, while no significant changes were observed in the control group. Oral iron supplementation brought more obvious improvements of iron status indicators including absolute increases in serum iron (11.08 ± 2.19 μmol/L vs. 4.43 ± 0.47 μmol/L), transferrin saturation (11.26 ± 1.65% vs. 1.01 ± 0.23%), and hemoglobin (31.47 ± 1.19 g/L vs. 21.00 ± 2.69 g/L) in the acupuncture group than control group (all P < 0.05). Meanwhile, serum leptin (2.26 ± 0.45 ng/ml vs. 8.13 ± 0.55 ng/ml, P < 0.05) and hepcidin (3.52 ± 1.23 ng/ml vs. 6.77 ± 0.84 ng/ml, P < 0.05) concentrations declined significantly in the acupuncture group than those in the control group.
CONCLUSIONAcupuncture-based weight loss can enhance the therapeutic effects of iron replacement therapy for obesity-related ID/IDA through improving intestinal iron absorption, probably by downregulating the systemic leptin-hepcidin levels.
Acupuncture Therapy ; Adult ; Female ; Hepcidins ; blood ; Humans ; Intestinal Absorption ; physiology ; Iron ; deficiency ; metabolism ; Leptin ; blood ; Male ; Middle Aged ; Obesity ; blood ; metabolism ; therapy ; Young Adult
3.Obesity and Gastrointestinal Cancer-related Factor.
The Korean Journal of Gastroenterology 2012;59(1):8-15
Despite a higher incidence and less favorable outcome of malignant tumors in obese patients, much less recognized is the link between obesity and cancer. The mechanism of the association of obesity with carcinogenesis remains incompletely understood. Postulated mechanisms include insulin resistance, insulin-like growth factor signaling, chronic inflammation, immunomodulation, hyperglycemia-induced oxidative stress, and changes of intestinal microbiome. Insulin resistance leads to direct mitogenic and antiapoptotic signaling by insulin and the insulin-like growth factor axis. Obesity can be considered to be a state of chronic low-grade inflammation. In obesity, numerous proinflammatory cytokines are released from adipose tissue which may involve in carcinogenesis. Hyperglycemia in susceptible cells results in the overproduction of superoxide and this process is the key to initiating all damaging pathways related to diabetes. This hyperglycemia-induced oxidative stress could be one possible link among obesity, diabetes, and cancer development. The role of obesity-related changes in the intestinal microbiome in gastrointestinal carcinogenesis deserves further attention.
Adipokines/metabolism/physiology
;
Gastrointestinal Neoplasms/*etiology/microbiology
;
Humans
;
Inflammation/etiology
;
Insulin/metabolism/physiology
;
Leptin/metabolism/physiology
;
Obesity/*complications/immunology/metabolism
;
Oxidative Stress
;
Somatomedins/metabolism/physiology
4.Pathophysiological Role of Hormones and Cytokines in Cancer Cachexia.
Hyun Jung KIM ; Han Jo KIM ; Jina YUN ; Kyoung Ha KIM ; Se Hyung KIM ; Sang Cheol LEE ; Sang Byung BAE ; Chan Kyu KIM ; Nam Su LEE ; Kyu Taek LEE ; Seong Kyu PARK ; Jong Ho WON ; Hee Sook PARK ; Dae Sik HONG
Journal of Korean Medical Science 2012;27(2):128-134
We investigated the role of fasting hormones and pro-inflammatory cytokines in cancer patients. Hormones (ghrelin, adiponectin, and leptin) and cytokines (TNF-alpha, IFN-gamma, and IL-6) were measured by ELISA or RIA in lung cancer and colorectal cancer patients before the administration of cancer therapy, and measurements were repeated every 2 months for 6 months. From June 2006 to August 2008, 42 patients (19 with colorectal cancer and 23 with lung cancer) were enrolled. In total, 21 patients were included in the cachexia group and the others served as a comparison group. No significant difference in the initial adiponectin, ghrelin, TNF-alpha, IFN-gamma, or IL-6 level was observed between groups, although leptin was significantly lower in cachectic patients than in the comparison group (15.3 +/- 19.5 vs 80.9 +/- 99.0 pg/mL, P = 0.007). During the follow-up, the patients who showed a > 5% weight gain had higher ghrelin levels after 6 months. Patients exhibiting elevated IL-6 levels typically showed a weight loss > 5% after 6 months. A blunted adiponectin or ghrelin response to weight loss may contribute to cancer cachexia and IL-6 may be responsible for inducing and maintaining cancer cachexia.
Adiponectin/analysis
;
Aged
;
Antineoplastic Agents/therapeutic use
;
Cachexia/*physiopathology
;
Colorectal Neoplasms/drug therapy/*metabolism/mortality
;
Cytokines/*analysis
;
Female
;
Follow-Up Studies
;
Ghrelin/analysis
;
Humans
;
Interferon-gamma/analysis/physiology
;
Interleukin-6/analysis
;
Leptin/analysis
;
Lung Neoplasms/drug therapy/*metabolism/mortality
;
Male
;
Middle Aged
;
Peptide Hormones/*analysis
;
Prognosis
;
Prospective Studies
;
Survival Rate
;
Tumor Necrosis Factor-alpha/analysis
;
Weight Gain
;
Weight Loss
5.Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes.
Kyoung Soo KIM ; Da Hee OH ; Jung Yeon KIM ; Bong Gn LEE ; Jeong Soon YOU ; Kyung Ja CHANG ; Hyunju CHUNG ; Myung Chul YOO ; Hyung In YANG ; Ja Heon KANG ; Yoo Chul HWANG ; Kue Jeong AHN ; Ho Yeon CHUNG ; In Kyung JEONG
Experimental & Molecular Medicine 2012;44(11):665-673
This study aimed to determine whether taurine supplementation improves metabolic disturbances and diabetic complications in an animal model for type 2 diabetes. We investigated whether taurine has therapeutic effects on glucose metabolism, lipid metabolism, and diabetic complications in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term duration of diabetes. Fourteen 50-week-old OLETF rats with chronic diabetes were fed a diet supplemented with taurine (2%) or a non-supplemented control diet for 12 weeks. Taurine reduced blood glucose levels over 12 weeks, and improved OGTT outcomes at 6 weeks after taurine supplementation, in OLETF rats. Taurine significantly reduced insulin resistance but did not improve beta-cell function or islet mass. After 12 weeks, taurine significantly decreased serum levels of lipids such as triglyceride, cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol. Taurine significantly reduced serum leptin, but not adiponectin levels. However, taurine had no therapeutic effect on damaged tissues. Taurine ameliorated hyperglycemia and dyslipidemia, at least in part, by improving insulin sensitivity and leptin modulation in OLETF rats with long-term diabetes. Additional study is needed to investigate whether taurine has the same beneficial effects in human diabetic patients.
Adipokines/blood
;
Animals
;
Blood Glucose
;
Diabetes Mellitus, Type 2/drug therapy
;
Dietary Supplements
;
Dyslipidemias/blood/*drug therapy
;
Glucose Tolerance Test
;
Hyperglycemia/blood/*drug therapy
;
Hypoglycemic Agents/administration & dosage/*pharmacology
;
Hypolipidemic Agents/administration & dosage/*pharmacology
;
Insulin/physiology/secretion
;
Insulin Resistance
;
Insulin-Secreting Cells/physiology/secretion
;
Leptin/*blood
;
Lipid Metabolism/drug effects
;
Lipids/blood
;
Male
;
Organ Specificity
;
Rats
;
Rats, Long-Evans
;
Taurine/administration & dosage/*pharmacology
6.Lentivirus-mediated RNA interference targeting the ObR gene in human breast cancer MCF-7 cells in a nude mouse xenograft model.
Rong-Quan XUE ; Jun-Chao GU ; Song-Tao DU ; We YU ; Yu WANG ; Zhong-Tao ZHANG ; Zhi-Gang BAI ; Xue-Mei MA
Chinese Medical Journal 2012;125(9):1563-1570
BACKGROUNDThere is a significant association between obesity and breast cancer, which is possibly due to the expression of leptin. Therefore, it is important to clarify the role of leptin/ObR (leptin receptor) signaling during the progression of human breast cancer.
METHODSNude mice with xenografts of MCF-7 human breast cancer cells were administered recombinant human leptin subcutaneous via injection around the tumor site. Mice in the experimental group were intratumorally injected with ObR-RNAi-lentivirus, while negative control group mice were injected with the same dose of negative-lentivirus. Tumor size was blindly measured every other day, and mRNA and protein expression levels of ObR, estrogen receptor a (ERa), and vascular endothelial growth factor (VEGF) for each group were determined.
RESULTSKnockdown of ObR-treated xenografted nude mice with a high leptin microenvironment was successfully established. Local injection of ObR-RNAi-lentivirus significantly suppressed the established tumor growth in nude mice. ObR level was significantly lower in the experimental group than in the negative control group, while the amounts of ERa and VEGF expression were significantly lower in the leptin group than in the control group (P < 0.01 for all).
CONCLUSIONSInhibition of leptin/ObR signaling is essential to breast cancer proliferation and possible crosstalk between ObR and ERa, and VEGF, and may lead to novel therapeutic treatments aiming at targeting ObR in breast cancers.
Animals ; Breast Neoplasms ; genetics ; metabolism ; therapy ; Estrogen Receptor alpha ; genetics ; metabolism ; Female ; Humans ; Lentivirus ; genetics ; MCF-7 Cells ; Mice ; Mice, Nude ; RNA Interference ; physiology ; Receptors, Leptin ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; Xenograft Model Antitumor Assays
7.Butyrate regulates leptin expression through different signaling pathways in adipocytes.
Mohamed Mohamed SOLIMAN ; Mohamed Mohamed AHMED ; Alaa Eldin SALAH-ELDIN ; Abeer Abdel Alim ABDEL-AAL
Journal of Veterinary Science 2011;12(4):319-323
Leptin is an adipocytokine that regulates body weight, and maintains energy homeostasis by promoting reduced food intake and increasing energy expenditure. Leptin expression and secretion is regulated by various factors including hormones and fatty acids. Butyrate is a short-chain fatty acid that acts as source of energy in humans. We determined whether this fatty acid can play a role in leptin expression in fully differentiated human adipocytes. Mature differentiated adipocytes were incubated with or without increasing concentrations of butyrate. RNA was extracted and leptin mRNA expression was examined by Northern blot analysis. Moreover, the cells were incubated with regulators that may affect signals which may alter leptin expression and analyzed with Northern blotting. Butyrate stimulated leptin expression, and stimulated mitogen activated protein kinase (MAPK) and phospho-CREB signaling in a time-dependent manner. Prior treatment of the cells with signal transduction inhibitors as pertusis toxin, Gi protein antagonist, PD98059 (a MAPK inhibitor), and wortmannin (a PI3K inhibitor) abolished leptin mRNA expression. These results suggest that butyrate can regulate leptin expression in humans at the transcriptional level. This is accomplished by: 1) Gi protein-coupled receptors specific for short-chain fatty acids, and 2) MAPK and phosphatidylinositol-3-kinase (PI3K) signaling pathways.
Adipocytes/*metabolism
;
Azo Compounds
;
Butyric Acid/*pharmacology
;
CREB-Binding Protein/genetics/metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Gene Expression Regulation/*drug effects/physiology
;
Humans
;
Leptin/genetics/*metabolism
;
Mitogen-Activated Protein Kinase Kinases/genetics/metabolism
;
Phosphatidylinositol 3-Kinases/genetics/metabolism
;
RNA, Messenger/genetics/metabolism
;
Signal Transduction/*physiology
;
Staining and Labeling
8.Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation.
Protein & Cell 2011;2(10):800-813
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.
Animals
;
Energy Metabolism
;
Gene Expression
;
Humans
;
Hunger
;
Hypothalamus
;
metabolism
;
physiology
;
Leptin
;
metabolism
;
physiology
;
Neural Pathways
;
metabolism
;
Neuropeptides
;
genetics
;
metabolism
;
Obesity
;
metabolism
9.Integrative Physiology: Defined Novel Metabolic Roles of Osteocalcin.
Yu Sik KIM ; Il Young PAIK ; Young Jun RHIE ; Sang Hoon SUH
Journal of Korean Medical Science 2010;25(7):985-991
The prevailing model of osteology is that bones constantly undergo a remodeling process, and that the differentiation and functions of osteoblasts are partially regulated by leptin through different central hypothalamic pathways. The finding that bone remodeling is regulated by leptin suggested possible endocrinal effects of bones on energy metabolism. Recently, a reciprocal relationship between bones and energy metabolism was determined whereby leptin influences osteoblast functions and, in turn, the osteoblast-derived protein osteocalcin influences energy metabolism. The metabolic effects of bones are caused by the release of osteocalcin into the circulation in an uncarboxylated form due to incomplete gamma-carboxylation. In this regard, the Esp gene encoding osteotesticular protein tyrosine phosphatase is particularly interesting because it may regulate gamma-carboxylation of osteocalcin. Novel metabolic roles of osteocalcin have been identified, including increased insulin secretion and sensitivity, increased energy expenditure, fat mass reduction, and mitochondrial proliferation and functional enhancement. To date, only a positive correlation between osteocalcin and energy metabolism in humans has been detected, leaving causal effects unresolved. Further research topics include: identification of the osteocalcin receptor; the nature of osteocalcin regulation in other pathways regulating metabolism; crosstalk between nutrition, osteocalcin, and energy metabolism; and potential applications in the treatment of metabolic diseases.
Bone Remodeling/physiology
;
Bone and Bones/*metabolism
;
*Energy Metabolism
;
Humans
;
Leptin/metabolism
;
Osteocalcin/genetics/*metabolism
10.Exercise on the sexual development and the fat leptin receptor mRNA expression in the high-fat die female rats.
Xue-Jie YI ; Hui WANG ; Qiu-Ping LI
Chinese Journal of Applied Physiology 2009;25(4):454-542
Animals
;
Diet, High-Fat
;
Dietary Fats
;
administration & dosage
;
Female
;
Obesity
;
etiology
;
physiopathology
;
Physical Conditioning, Animal
;
physiology
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Leptin
;
genetics
;
metabolism
;
Sexual Development
;
physiology

Result Analysis
Print
Save
E-mail