1.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
2.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
3.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
4.Research on Satisfaction Degree of Doctor-patient Communication Quality based on Patient Perception
Yang FU ; Yi SUN ; Lishan LI ; Ye ZHENG ; Yunqi ZHANG ; Lei SHI ; Mei YIN
Chinese Medical Ethics 2024;35(4):374-379
Objective sampling method was used to conduct a questionnaire survey on outpatients in two hospitals in Guangdong province in order to evaluate patients’ satisfaction with the quality of medical service. This paper explored the factors that affect patients’ evaluation of medical service quality, and found that patients’ age was negatively correlated with the evaluation of medical service quality. It is suggested that the establishment of friendly medical institutions should be carried out according to the national policy. At the same time, the management mechanism of hospital should be improved, the number of medical service centers for "efficient" should be increased, and the medical service personnel should be regularly trained; carry out medical knowledge education in community, improve the popularization of personal medical knowledge and close the cognitive gap between doctors and patients.
5. Effect Xuefu Zhuyu decoction on endothelial-to-mesenchymal transition of pulmonary artery endothelial cells and its mechanism
Zuo-Mei ZENG ; Xin-Yue WANG ; Lei-Yu TIAN ; Li-Dan CUI ; Jian GUO ; Yu-Cai CHEN
Chinese Pharmacological Bulletin 2024;40(1):155-161
Aim To investigate the effect of Xuefu Zhuyu decoction on transforming growth factor-β1(TGF-β1 ) -induced endothelial-to-mesenchymal transition (EndMT) of pulmonary microvascular endothelial cells ( PMVEC), and further analyze the mechanism related to the TGF-β1/Smad signaling pathway. Method To construct an EndMT cell model, PMVEC was treated with TGF-β1 (5 μg · L
6.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
7.Determination of Isobutyl Chloroformate Residue in Agatroban by Derivatization-Gas Chromatography-Mass Spectrometry
Chong QIAN ; Bo-Kai MA ; Chuang NIU ; Shan-Shan LIU ; Wen-Wen HUANG ; Xin-Lei GOU ; Wei WANG ; Mei ZHANG ; Xue-Li CAO
Chinese Journal of Analytical Chemistry 2024;52(1):113-120
A derivatizaton method combined with gas chromatography-mass spectrometry(GC-MS)was established for detection of isobutyl chloroformate(IBCF)residue in active pharmaceutical ingredient of agatroban.The extraction and derivatization reagents,derivatization time,qualitative and quantitative ions were selected and optimized,respectively.The possible mechanism of derivatization and characteristic fragment ions fragmentation were speculated.The agatroban samples were dissolved and extracted by methanol,and the residual IBCF was derived with methanol to generate methyl isobutyl carbonate(MIBCB).After 24 h static derivatization at room temperature,IBCF was completely transformed into MIBCB,which could be used to indirectly detect IBCF accurately.The results showed that the linearity of this method was good in the range of 25-500 ng/mL(R2=0.9999).The limit of detection(LOD,S/N=3)was 0.75 μg/g,and the limit of quantification(LOQ,S/N=10)was 2.50 μg/g.Good recoveries(95.2%-97.8%)and relative standard deviations(RSDs)less than 3.1%(n=6)were obtained from agatroban samples at three spiked levels of IBCF(2.50,25.00,50.00 μg/g),which showed good accuracy of this method.Good precision of detection results was obtained by different laboratory technicians at different times,the mean value of spiked sample solution(25.00 μg/g)was 24.28 μg/g,and the RSD was 2.1%(n=12).The durability was good,minor changes of detection conditions had little effect on the results.Under the original condition and conditions with initial column temperature±5℃,heating rate±2℃/min,column flow rate±0.1 mL/min,the IBCF content of spiked sample solution(25.00 μg/g)was detected,the mean value of detection results was 24.16 μg/g,and the RSD was 2.2%(n=7).Eight batches of agatroban samples from two manufacturers were detected using the established method,and the results showed that no IBCF residue was detected in any of these samples.The agatroban samples could be dissolved by methanol,and then the IBCF residue could be simultaneously extracted and derived with methanol as well.This detection method had the advantages of simple operation,high sensitivity,low matrix effect and accurate quantification,which provided a new effective method for detection of IBCF residue in agatroban.
8.The biological function and mechanism of IDH1 gene in intrahepatic cholangiocarcinoma cell HuCCT1
Mei-Jia LIN ; Yu-Qing LEI ; Zhou-Jie YE ; Li-Ping ZHU ; Xin-Rui WANG ; Xiong-Fei HUANG
Medical Journal of Chinese People's Liberation Army 2024;49(2):194-203
Objective To explore the role and possible molecular mechanism of Isocitrate dehydrogenase 1(IDH1)gene in proliferation and migration of intrahepatic cholangiocarcinoma(iCCA)cell HuCCT1.Methods HuCCT1 cells with IDH1 gene knockout(HuCCT1IDH1-/-)were constructed by CRISPR/Cas9 gene editing technology.To investigate the capacities of proliferation,migration and invasion of HuCCT1WT(HuCCT1 cells with wild-type IDH1 gene)and HuCCT1IDH1-/-cells,assays of CCK-8,clone formation,scratch and transwell were performed.Western blotting was used to detect the expression levels of epithelial-mesenchymal transition(EMT)associated proteins E-cadherin,N-cadherin,Vimentin,MMP-9,Wnt3a and β-catenin in two groups of cells.The transcriptome sequencing data of HuCCT1WT and HuCCT1IDH1-/-cells were analyzed by bioinformatics methods,Western blotting was used to verify the expression of signaling pathway-related proteins.Results Compared with HuCCT1WT cells,HuCCT1IDH1-/-cells showed the number of proliferation and clone formation significantly reduced(P<0.05),the proportion of cells blocked in G2/M phase was significantly increased(P<0.01),the rate of scratch healing was significantly decreased(P<0.01),and the number of migrated cells(P<0.001)and invaded cells(P<0.05)was significantly reduced.qRT-PCR assay showed that the expression levels of IDH1,Vimentin,MMP-9 and genes related to the regulation of G2/M cycle proliferation,Cyclin A2,Cyclin B1 and CDK1 mRNA were down-regulated in HuCCT1IDH1-/-cells(P<0.05),and the expression of CDH1 mRNA encoding E-cadherin was up-regulated(P<0.01);Western blotting assay showed that the expression level of E-cadherin in HuCCT1IDH1-/-cells was significantly increased(P<0.05),and the expression level of N-cadherin,Vimentin and MMP-9 protein was significantly decreased(P<0.05)than that in HuCCT1WT cells.Data of transcriptome sequencing revealed 1476 differentially expressed genes(DEGs)between two groups of HuCCT1 cells.Go enrichment analysis showed the DEGs were significantly enriched in cell biological processes associated with inflammatory response,cell signaling and cell metabolism.Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis suggested that the DEGs may be involved in some signaling pathways such as Wnt,MAPK,Rap1,Hippo and TNF,which are closely related to the regulation of proliferation and invasion of tumor cells.Western blotting verification results showed that compared with HuCCT1WT cells,the relative expression of Wnt3a and β-catenin proteins of HuCCT1IDH1-/-cells was significantly decreased(P<0.05).Conclusions IDH1 gene may participate in the control of biological functions of HuCCT1 cells,including cell proliferation,migration,invasion and epithelial mesenchymal transition.The mechanism may be related to the activation of the Wnt/β-catenin signaling pathway.
9.miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13
Zhong LIU ; Lei HE ; Jian XIAO ; Qing-Mei ZHU ; Jun XIAO ; Yong-Ming YANG ; Yong-Jian LUO ; Zhong-Cheng MO ; Yi-Qun ZHANG ; Ming LI
Progress in Biochemistry and Biophysics 2024;51(5):1203-1214
ObjectiveTo explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13. MethodsPlasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively. ResultsmiR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated withmiR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells. ConclusionmiR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.
10.Study on The Mechanism of Sinomenine Hydrochloride Induced Fibroblast Apoptosis in Rabbits with Adhesive Knee Ankylosis
Xin-Ju HOU ; Hong-Feng LEI ; Yong CHEN ; Fu-Xi LI ; Jing-Ning SUN ; Jia-Ming LIU ; Hong-Mei MA
Progress in Biochemistry and Biophysics 2024;51(4):959-968
ObjectiveThis study aimed to observe the impact of sinomenine hydrochloride on the proliferation of fibroblasts and the mRNA expression of related genes in knee joint adhesion and contracture in rabbits. Additionally, we sought to explore its potential mechanisms in combating knee joint adhesion and contracture. MethodsFibroblasts were cultured in vitro, and experimental groups with varying concentrations of sinomenine hydrochloride were established alongside a control group. Cell proliferation was assessed using the CCK-8 assay. Changes in the mRNA expression of fibroblast-related genes following sinomenine hydrochloride treatment were evaluated using RT-qPCR. The impact of the drug on serum levels of inflammatory cytokines was determined using the ELISA method, and the expression of related proteins was assessed using Western blot. ResultsSinomenine hydrochloride was found to inhibit fibroblast viability, with viability decreasing as the concentration of sinomenine hydrochloride increased. The effects of sinomenine hydrochloride in all experimental groups were highly significant (P<0.05). At the mRNA expression level, compared to the control group, sinomenine hydrochloride led to a significant downregulation of inflammatory cytokines in all groups (P<0.05). Additionally, the expression levels of apoptosis-related proteins significantly increased, while Bcl-2 mRNA expression decreased (P<0.05). The mRNA expression levels of the PI3K/mTOR/AKT3 signaling pathway also decreased (P<0.05). At the protein expression level, in comparison to the control group, the levels of inflammatory cytokines IL-6, IL-8, IL-1β, and TGF-β were significantly downregulated in the middle and high-dose sinomenine hydrochloride groups (P<0.05). The expression levels of cleaved-PARP, cleaved caspase-3/7, and Bax increased and were positively correlated with the dose, while the expression levels of the anti-apoptotic protein Bcl-2 and the PI3K/AKT3/mTOR signaling pathway were negatively correlated with the dose. Sinomenine hydrochloride exhibited a significant inhibitory effect on the viability of rabbit knee joint fibroblasts, which may be associated with the downregulation of inflammatory cytokines IL-6, IL-8, and IL-1β, promotion of apoptosis-related proteins cleaved-PARP, cleaved caspase-3/7, and Bax, suppression of Bcl-2 expression, and inhibition of gene expression in the downstream PI3K/AKT3/mTOR signaling pathway. ConclusionSinomenine hydrochloride can inhibit the inflammatory response of fibroblasts in adhesive knee joints and accelerate fibroblast apoptosis. This mechanism may offer a novel approach to improving and treating knee joint adhesion.

Result Analysis
Print
Save
E-mail