1.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
2.Association between Modified Yiqi Huoxue Jiedu Formula (益气活血解毒方) or PARP Inhibitors Maintenance Therapy and Recurrence and Metastasis in Advanced Ovarian Cancer:A Propensity Score Matched Case-Control Study
Yongjia CUI ; Wenping LU ; Lei CHANG ; Yilin WEI ; Xiyue WANG
Journal of Traditional Chinese Medicine 2025;66(3):256-261
ObjectiveTo investigate the association between the maintenance treatment of modified Yiqi Huoxue Jiedu Formula (益气活血解毒方) or poly ADP ribose polymerase (PARP) inhibitors and the recurrence and metastasis of advanced ovarian cancer. MethodsA case-control study design was employed, dividing patients with advanced ovarian cancer into two groups based on the occurrence of recurrence and metastasis following first-line maintenance treatment. Patients with recurrence and metastasis comprised the case group, while those without recurrence and metastasis served as the control group. The previous first-line maintenance treatment method was set as the exposure factor in the study (with the use of modified Yiqi Huoxue Jiedu Formula defined as exposed and PARP inhibitors defined as unexposed). Basic information was collected for both groups, including the achievement of satisfactory R0 surgery, age, stage, neoadjuvant chemotherapy, lymph node metastasis, germline BRCA1/2 mutations, homologous recombination deficiency positivity, first-line maintenance treatment method (modified Yiqi Huoxue Jiedu Formula or PARP inhibitors), and CA125 levels after the last chemotherapy. The baseline data of the two groups were assessed for differences. If there exists difference, a 1∶1 nearest neighbor matching method was used for propensity score matching. Univariate and multivariate logistic regression analyses were employed to evaluate the association between the modified Yiqi Huoxue Jiedu Formula or PARP inhibitors and the recurrence and metastasis of ovarian cancer. ResultsA total of 201 patients with advanced ovarian cancer were included, with 97 in the case group and 104 in the control group. Both groups showed statistically significant differences in R0 surgery, stage, neoadjuvant chemotherapy, and CA125 levels after the last chemotherapy (P<0.05), indicating baseline imbalance. After propensity score matching, there were 71 patients in both the case and control groups, achieving baseline balance (P>0.05). Univariate logistic regression analysis indicated that the achievement of satisfactory R0 surgery (P = 0.006), disease stage (P = 0.001), the use of neoadjuvant chemotherapy (P = 0.024), treatment modality (P = 0.006), and CA125 levels after the last chemotherapy (P = 0.013) were associated with the recurrence and metastasis of ovarian cancer. Multivariate logistic regression analysis revealed that disease stage was an independent influencing factor for the recurrence and metastasis of ovarian cancer (P = 0.030), whereas the P-value for the correlation between first-line maintenance treatment and ovarian cancer was 0.188. ConclusionFirst-line maintenance treatment of ovarian cancer patients with the use of modified Yiqi Huoxue Jiedu Formula or PARP inhibitors does not correlate with the recurrence and metastasis of ovarian cancer.
3.Comprehensive analysis of genes related to endometrial receptivity and alternative splicing events in northwest Tibetan cashmere goats
Ji DE ; Langda SUO ; Yuchen WEI ; Bin WANG ; Awangcuoji ; Renqingcuomu ; Jiuzeng CUI ; Lei ZHANG ; Gui BA
Chinese Journal of Tissue Engineering Research 2025;29(7):1429-1436
BACKGROUND:Endometrial receptivity is a key factor in embryo implantation in northwest Tibetan cashmere goats,and the expression of genes related to endometrial receptivity and their variable splicing are still unclear. OBJECTIVE:To analyze and explore genes and variable splicing events related to endometrial receptivity in northwest Tibetan cashmere goats. METHODS:On days 5 and 15 of pregnancy(representing pre receptive endometrium group and receptive endometrium group),three northwest Tibetan cashmere goats were randomly selected.Endometrial tissue was collected and stained with hematoxylin and eosin to observe tissue morphology.Immunohistochemical staining was used to detect the expression of endometrial receptive marker proteins leukemia inhibitory factor and vascular endothelial growth factor.After the total RNA was extracted and the quality test was qualified,transcriptome sequencing was performed to search differentially expressed mRNAs,lncRNAs,circRNAs,and miRNAs,perform functional prediction,and analyze alternative splicing mRNAs and lncRNAs related to endometrial receptivity. RESULTS AND CONCLUSION:(1)Compared with the pre receptive endometrium group,the expression levels of leukemia inhibitory factor and vascular endothelial growth factor proteins in the endometrial tissue of the receptive endometrium group were significantly increased.(2)The sequencing results showed that the differentially expressed genes were mostly mRNA and lncRNA genes,including 250 upregulated mRNAs,193 upregulated lncRNAs,135 downregulated mRNAs,and 123 downregulated lncRNAs,which were significantly enriched in the Wnt,Hedgehog,and Hippo signaling pathways.(3)Alternative splicing event analysis uncovered 8 differentially expressed variable splicing transcripts,which were all mRNA transcripts,including 2 downregulated and 6 upregulated,and were significantly associated with vascular endothelial growth factor receptor signaling,cell motility,and embryonic development.
4.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
5.The bridging role of programmed cell death in association between periodontitis and rheumatoid arthritis
GE Ruiyang ; ZHOU Yingying ; MAO Haowei ; HAN Lei ; CUI Di ; YAN Fuhua
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(6):457-465
Periodontitis and rheumatoid arthritis (RA) are chronic inflammatory diseases that share similar inflammatory mechanisms and characteristics. Programmed cell death (PCD) has recently garnered attention for its crucial role in regulating inflammation and maintaining tissue homeostasis, as well as for its potential to link these two diseases. The various forms of PCD--including apoptosis, pyroptosis, and necroptosis--are closely controlled by signaling pathways such as Toll-like receptor 4 (TLR4) /NF-κB and MAPK. These pathways determine cell fate and influence inflammatory responses, tissue destruction, and repair, and they both play important roles in the pathogenesis of RA and periodontitis. In periodontitis, periodontal pathogens such as Porphyromonas gingivalis (P. gingivalis) and its virulence factors, including lipopolysaccharide (LPS), induce pyroptosis and necroptosis in immune cells such as macrophages via the TLR4/NF-κB pathway, which leads to an excessive release of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Concurrently, these pathogens inhibit the normal apoptotic process of immune cells, such as neutrophils, prolonging their survival, exacerbating immune imbalance, and aggravating periodontal tissue destruction. Similarly, in RA synovial tissue, fibroblast-like synoviocytes (FLS) acquire apoptosis resistance through signaling pathways such as the Bcl-2 family, JAK/STAT, and NF-κB, allowing for the consistent proliferation and secretion of matrix metalloproteinases and pro-inflammatory cytokines. Meanwhile, the continuous activation of pyroptotic pathways in neutrophils and macrophages results in the sustained release of IL-1β, further exacerbating synovial inflammation and bone destruction. Notably, dysregulated PCD fosters inter-organ crosstalk through shared inflammatory mediators and metabolic networks. Damage-associated molecular patterns (DAMPs) and cytokines that originate from periodontal lesions can spread systemically, influencing cell death processes in synovial and immune cells, thereby aggravating joint inflammation and bone erosion. By contrast, systemic inflammation in RA can upregulate osteoclastic activity or interfere with the normal apoptosis of periodontal cells via TNF-α and IL-6, ultimately intensifying periodontal immune imbalance. This review highlights the pivotal bridging role of PCD in the pathogenesis of both periodontitis and RA, providing a reference for therapeutic strategies that target cell death pathways to manage and potentially mitigate these diseases.
6."Compatibility" Relationship of Active Components and Heat-clearing and Blood-cooling Effect of Rehmannia glutinosa Roots
Yaman CHEN ; Jinpeng CUI ; Juan ZHANG ; Qingpu LIU ; Haiyan GONG ; Jingwei LEI ; Fengqing WANG ; Caixia XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):193-201
ObjectiveTo analyze the "compatibility" relationship of sugars and glycosides and the heat-clearing and blood-cooling effect of the roots of four varieties of Rehmannia glutinosa and provide a basis for research on the pharmacodynamic material basis and quality control of R. glutinosa. MethodsThe content of sugars and glycosides in the roots of four varieties of R. glutinosa was determined during the growth period. The principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and the "compatibility" relationship of active components were employed to screen out the differential samples. A rat model of bleeding due to blood heat was used to verify the pharmacodynamic differences and the potential active components of differential samples. ResultsThe content and proportion characteristics of various components in roots of the four varieties of R. glutinosa during the expansion stage and the maturity stage had obvious differences. The proportion of phenylethanoid glycosides at the maturity stage was higher than that at the expansion stage. The R. glutinosa variety 85-5 had special quality characteristics among the tested varieties. All the samples alleviated the symptoms in the rat model. The effect of clearing heat and cooling blood was different between the maturity stage and the expansion stage, as well as between 85-5 samples at the maturity stage and other samples. The effect of clearing heat and cooling blood of R. glutinosa roots was the result of the combined action of multiple components in R. glutinosa roots and might be related to the high proportions of polysaccharides, iridoid glycosides, and phenylethanoid glycosides. ConclusionThe growth stage and variety affect the quality of R. glutinosa roots. The effect of clearing heat and cooling blood of R. glutinosa roots was related to the content and proportions of various components. The study can provide a basis for the basic research on the active components and quality control of R. glutinosa.
7."Compatibility" Relationship of Active Components and Heat-clearing and Blood-cooling Effect of Rehmannia glutinosa Roots
Yaman CHEN ; Jinpeng CUI ; Juan ZHANG ; Qingpu LIU ; Haiyan GONG ; Jingwei LEI ; Fengqing WANG ; Caixia XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):193-201
ObjectiveTo analyze the "compatibility" relationship of sugars and glycosides and the heat-clearing and blood-cooling effect of the roots of four varieties of Rehmannia glutinosa and provide a basis for research on the pharmacodynamic material basis and quality control of R. glutinosa. MethodsThe content of sugars and glycosides in the roots of four varieties of R. glutinosa was determined during the growth period. The principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and the "compatibility" relationship of active components were employed to screen out the differential samples. A rat model of bleeding due to blood heat was used to verify the pharmacodynamic differences and the potential active components of differential samples. ResultsThe content and proportion characteristics of various components in roots of the four varieties of R. glutinosa during the expansion stage and the maturity stage had obvious differences. The proportion of phenylethanoid glycosides at the maturity stage was higher than that at the expansion stage. The R. glutinosa variety 85-5 had special quality characteristics among the tested varieties. All the samples alleviated the symptoms in the rat model. The effect of clearing heat and cooling blood was different between the maturity stage and the expansion stage, as well as between 85-5 samples at the maturity stage and other samples. The effect of clearing heat and cooling blood of R. glutinosa roots was the result of the combined action of multiple components in R. glutinosa roots and might be related to the high proportions of polysaccharides, iridoid glycosides, and phenylethanoid glycosides. ConclusionThe growth stage and variety affect the quality of R. glutinosa roots. The effect of clearing heat and cooling blood of R. glutinosa roots was related to the content and proportions of various components. The study can provide a basis for the basic research on the active components and quality control of R. glutinosa.
8.The Mechanism of Exercise Regulating Intestinal Flora in The Prevention and Treatment of Depression
Lei-Zi MIN ; Jing-Tong WANG ; Qing-Yuan WANG ; Yi-Cong CUI ; Rui WANG ; Xin-Dong MA
Progress in Biochemistry and Biophysics 2025;52(6):1418-1434
Depression, a prevalent mental disorder with significant socioeconomic burdens, underscores the urgent need for safe and effective non-pharmacological interventions. Recent advances in microbiome research have revealed the pivotal role of gut microbiota dysbiosis in the pathogenesis of depression. Concurrently, exercise, as a cost-effective and accessible intervention, has demonstrated remarkable efficacy in alleviating depressive symptoms. This comprehensive review synthesizes current evidence on the interplay among exercise, gut microbiota modulation, and depression, elucidating the mechanistic pathways through which exercise ameliorates depressive symptoms via the microbiota-gut-brain (MGB) axis. Depression is characterized by gut microbiota alterations, including reduced alpha and beta diversity, depletion of beneficial taxa (e.g., Bifidobacterium, Lactobacillus, and Coprococcus), and overgrowth of pro-inflammatory and pathogenic bacteria (e.g., Morganella, Klebsiella, and Enterobacteriaceae). Metagenomic analyses reveal disrupted metabolic functions in depressive patients, such as diminished synthesis of short-chain fatty acids (SCFAs), impaired tryptophan metabolism, and dysregulated bile acid conversion. For instance, Bifidobacterium longum deficiency correlates with reduced synthesis of neuroactive metabolites like homovanillic acid, while decreased Coprococcus abundance limits butyrate production, exacerbating neuroinflammation. Furthermore, elevated levels of indole derivatives from Clostridium species inhibit serotonin (5-HT) synthesis, contributing to depressive phenotypes. These dysbiotic profiles disrupt the MGB axis, triggering systemic inflammation, neurotransmitter imbalances, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. Exercise exerts profound effects on gut microbiota composition, diversity, and metabolic activity. Longitudinal studies demonstrate that sustained aerobic exercise increases alpha diversity, enriches SCFA-producing genera (e.g., Faecalibacterium prausnitzii, Roseburia, and Akkermansia), and suppresses pathobionts (e.g., Desulfovibrio and Streptococcus). For example, a meta-analysis of 25 trials involving 1 044 participants confirmed that exercise enhances microbial richness and restores the Firmicutes/Bacteroidetes ratio, a biomarker of metabolic health. Notably, endurance training promotes Veillonella proliferation, which converts lactate into propionate, enhancing energy metabolism and delaying fatigue. Exercise also strengthens intestinal barrier integrity by upregulating tight junction proteins (e.g., ZO-1, occludin), thereby reducing lipopolysaccharide (LPS) translocation and systemic inflammation. However, excessive exercise may paradoxically diminish microbial diversity and exacerbate intestinal permeability, highlighting the importance of moderate intensity and duration. Exercise ameliorates depressive symptoms through multifaceted interactions with the gut microbiota, primarily via 4 interconnected pathways. First, exercise mitigates neuroinflammation by elevating anti-inflammatory SCFAs such as butyrate, which suppresses NF-κB signaling to attenuate microglial activation and oxidative stress in the hippocampus. Animal studies demonstrate that voluntary wheel running reduces hippocampal TNF‑α and IL-17 levels in stress-induced depression models, while fecal microbiota transplantation (FMT) from exercised mice reverses depressive behaviors by modulating the TLR4/NF‑κB pathway. Second, exercise regulates neurotransmitter dynamics by enriching GABA-producing Lactobacillus and Bifidobacterium, thereby counteracting neuronal hyperexcitability. Aerobic exercise also enhances the abundance of Lactobacillus plantarum and Streptococcus thermophilus, which facilitate 5-HT and dopamine synthesis. Clinical trials reveal that 12 weeks of moderate exercise increases fecal Coprococcus and Blautia abundance, correlating with improved 5-HT bioavailability and reduced depression scores. Third, exercise normalizes HPA axis hyperactivity by reducing cortisol levels and restoring glucocorticoid receptor sensitivity. In rodent models, chronic stress-induced corticosterone elevation is reversed by probiotic supplementation (e.g., Lactobacillus), which enhances endocannabinoid signaling and hippocampal neurogenesis. Furthermore, exercise upregulates brain-derived neurotrophic factor (BDNF) via microbial metabolites like butyrate, promoting histone acetylation and synaptic plasticity. FMT experiments confirm that exercise-induced microbiota elevates prefrontal BDNF expression, reversing stress-induced neuronal atrophy. Fourth, exercise reshapes microbial metabolic crosstalk, diverting tryptophan metabolism toward 5-HT synthesis instead of neurotoxic kynurenine derivatives. Butyrate inhibits indoleamine 2,3-dioxygenase (IDO), a key enzyme in the kynurenine pathway linked to depression. Concurrently, exercise-induced Akkermansia enrichment enhances mucin production, fortifies the gut barrier, and reduces LPS-driven neuroinflammation. Collectively, these mechanisms underscore exercise as a potent modulator of the microbiota-gut-brain axis, offering a holistic approach to alleviating depression through microbial and neurophysiological synergy. Current evidence supports exercise as a potent adjunct therapy for depression, with personalized regimens (e.g., aerobic, resistance, or yoga) tailored to individual microbiota profiles. However, challenges remain in optimizing exercise prescriptions (intensity, duration, and type) and integrating them with probiotics, prebiotics, or FMT for synergistic effects. Future research should prioritize large-scale randomized controlled trials to validate causality, multi-omics approaches to decipher MGB axis dynamics, and mechanistic studies exploring microbial metabolites as therapeutic targets. The authors advocate for a paradigm shift toward microbiota-centric interventions, emphasizing the bidirectional relationship between physical activity and gut ecosystem resilience in mental health management. In conclusion, this review underscores exercise as a multifaceted modulator of the gut-brain axis, offering novel insights into non-pharmacological strategies for depression. By bridging microbial ecology, neuroimmunology, and exercise physiology, this work lays a foundation for precision medicine approaches targeting the gut microbiota to alleviate depressive disorders.
9.Echinatin inhibits malignant behaviors and immune escape of lung cancer A549 cells by activating the STING/TBK1/IRF3 signaling pathway
ZENG Li1 ; ZHANG Zuojun2 ; LEI Yuguang1 ; CUI Dongling1
Chinese Journal of Cancer Biotherapy 2025;32(9):934-940
[摘 要] 目的:探究刺甘草查尔酮(Ech)对肺癌A549细胞恶性生物学行为和免疫逃逸的影响及其相关机制。方法:常规培养正常肺上皮细胞BEAS-2B及A549细胞,经不同浓度的Ech处理24 h后,用MTT法检测细胞活力,筛选出20、30和40 μmol/L Ech进行后续实验。将A549细胞分为对照组(0 μmol/L Ech处理)和Ech低(20 μmol/L Ech)、中(30 μmol/L Ech)、高浓度(40 μmol/L Ech)处理组(Ech-L、Ech-M、Ech-H组)、Ech-H + 通路抑制剂H-151(1.0 μmol/L)处理组(Ech-H + H-151组)。用EdU法、划痕愈合实验和Transwell实验分别检测各组A549细胞的增殖、迁移和侵袭能力。WB法检测各组A549细胞中与增殖、迁移、侵袭、STING/TBK1/IRF3信号通路相关蛋白的表达。将各组A549细胞与CD8+ T细胞共培养,用锥虫蓝染色法检测CD8+ T细胞存活率;WB法检测共培养上清液中Ⅰ型干扰素(IFN-Ⅰ)水平,ELISA实验检测共培养上清液中程序性死亡配体1(PD-L1)、白细胞介素-10(IL-10)、IL-4和转化生长因子-β(TGF-β)水平。结果:Ech以剂量依赖性方式抑制A549细胞的活力(均P < 0.05),但对BEAS-2B细胞活力无明显影响。Ech剂量依赖性地抑制A549细胞的增殖、迁移和侵袭能力(均P < 0.05),以及cyclin D1、Ki67、MMP2、MMP9、STING、p-TBK1和p-IRF3蛋白的表达(均P < 0.05),H-151可部分抑制其作用。Ech剂量依赖性地促进与A549细胞共培养的CD8+ T细胞存活(均P < 0.05),并促进其IFN-Ⅰ表达(均P < 0.05),抑制其PD-L1、IL-10、IL-4、TGF-β分泌(均P < 0.05),H-151则可部分抑制其作用(均P < 0.05)。结论:Ech通过激活STING/TBK1/IRF3信号通路抑制A549细胞的恶性生物学行为和免疫逃逸。
10.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation.


Result Analysis
Print
Save
E-mail