1.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
2.Role of podoplanin in hepatic stellate cell activation and liver fibrosis
Zhiyi WANG ; Guangyue YANG ; Wei ZHANG ; Yaqiong PU ; Xin ZHAO ; Wenting MA ; Xuling LIU ; Liu WU ; Le TAO ; Cheng LIU
Journal of Clinical Hepatology 2024;40(3):533-538
ObjectiveTo investigate the role and mechanism of podoplanin (PDPN) in hepatic stellate cell (HSC) activation and liver fibrosis. MethodsLiver biopsy samples were collected from 75 patients with chronic hepatitis B who attended Department of Infectious Diseases, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, for the first time from September 2019 to June 2022, and RT-PCR and immunohistochemistry were used to measure the expression of PDPN in liver tissue of patients in different stages of liver fibrosis. A total of 12 male C57/BL6 mice were randomly divided into control group and model group. The mice in the model group were given intraperitoneal injection of 10% CCl4, and those in the control group were injected with an equal volume of olive oil, for 6 weeks. HE staining and Sirius Red staining were used to observe liver histopathological changes; primary mouse liver cells were separated to measure the mRNA expression of PDPN in various types of cells; primary mouse HSCs were treated with PDPN protein, followed by treatment with the NF-κB inhibitor BAY11-708, to measure the expression of inflammatory factors in HSCs induced by PDPN. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Spearman correlation analysis was used to investigate data correlation. ResultsAs for the liver biopsy samples, there was a relatively low mRNA expression level of PDPN in normal liver, and there was a significant increase in the mRNA expression level of PDPN in liver tissue of stage S3 or S4 fibrosis (all P<0.001). Immunohistochemical staining showed that PDPN was mainly expressed in the fibrous septum and the hepatic sinusoid, and the PDPN-positive area in S4 liver tissue was significantly higher than that in S0 liver tissue (t=8.892, P=0.001). In normal mice, PDPN was mainly expressed in the hepatic sinusoid, and there was a significant increase in the expression of PDPN in CCl4 model mice (t=0.95, P<0.001), mainly in the fibrous septum. RT-PCR showed a significant increase in the mRNA expression of PDPN in the CCl4 model mice (t=11.25, P=0.002). Compared with hepatocytes, HSCs, Kupffer cells, and bile duct endothelial cells, hepatic sinusoidal endothelial cells showed a significantly high expression level of PDPN (F=20.56, P<0.001). Compared with the control group, the primary mouse HSCs treated by PDPN protein for 15 minutes showed significant increases in the mRNA expression levels of the inflammation-related factors TNFα, CCL3, CXCL1, and CXCR1 (all P<0.05), and there were significant reductions in the levels of these indicators after treatment with BAY11-7082 (all P<0.05). ConclusionThere is an increase in the expression of PDPN mainly in hepatic sinusoidal endothelial cells during liver fibrosis, and PDPN regulates HSC activation and promotes the progression of liver fibrosis via the NF-κB signaling pathway.
3.Therapeutic effect of Xiayuxue decoction on a mouse model of nonalcoholic fatty liver disease induced by high-fat diet and its mechanism
Linqi HOU ; Zhiyi WANG ; Xin ZHAO ; Jie ZHANG ; Wenting MA ; Xuling LIU ; Wei ZHANG ; Le TAO ; Cheng LIU ; Liu WU
Journal of Clinical Hepatology 2024;40(4):712-719
ObjectiveTo investigate the mechanism of action of Xiayuxue decoction in inhibiting nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet in mice by regulating nucleotide binding oligomerization domain like receptor containing pyrin domain protein 6 (NLRP6). MethodsA total of 15 male C57BL/6 mice were randomly divided into low-fat diet (LFD) group, high-fat diet (HFD) group, and Xiayuxue decoction-HFD group (XYXD group), with 5 mice in each group. Liver function parameters (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and blood lipid metabolic indicators (triglycerides [TG] and total cholesterol [TC]) were measured; HE staining and oil red O staining were performed for liver tissue to observe histomorpholoty and lipid droplet deposition; quantitative real-time PCR was used to measure the expression levels of inflammatory factors (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], interleukin-18 [IL-18], and NLRP6) in liver tissue; Western blot was used to measure the protein expression levels of NLRP6, nuclear factor-kappa B (NF-κB), and NF-κB p65; immunohistochemistry was used to measure the expression of NLRP6 and CD68. Mouse Raw264.7 cells were treated with palmitic acid (PA), lipopolysaccharide, and serum containing Xiayuxue decoction to observe inflammation. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the LFD group, the HFD group had significant increases in the serum levels of ALT, AST, TC, and TG (all P<0.05). Liver histopathological examination showed that the HFD group had marked hepatic steatosis and a signficant increase in NAS score (P<0.05), and quantitative real-time PCR showed significant increases in the inflammatory factors such as IL1β and IL-18 and a significant reduction in the expression of NLRP6 (all P<0.05). Immunohistochemistry showed that the expression of NLRP6 showed a similar trend as that of the macrophage marker CD68. Western blot showed that after the downregulation of NLRP6 expression, there was a significant increase in phosphorylated NF-κB p65 (P<0.05). Compared with the HFD group, Xiayuxue decoction effectively improved liver inflammation, upregulated the expression of NLRP6, and downregulated phosphorylated NF-κB p65 in HFD mice (all P<0.05). After Raw264.7 cells were treated with PA, NLRP6 was downregulated to promote the progression of inflammation (P<0.05), and treatment with Xiayuxue decoction could upregulate NLRP6 and inhibit inflammation NF-κB (P<0.05). ConclusionXiayuxue decoction can effectively improve hepatic steatosis and liver inflammation in a mouse model of NAFLD, possibly by regulating NLRP6/NF-κB to alleviate macrophage activation.
4.Effect of Xiayuxue Decoction against renal injury in mice with non-alcoholic fatty liver disease and its mechanism
Xin ZHAO ; Zhiyi WANG ; Le TAO ; Guangyue YANG ; Wei ZHANG ; Liu WU ; Wenting MA ; Qian CHEN ; Xuling LIU ; Cheng LIU
Journal of Clinical Hepatology 2024;40(11):2213-2220
Objective To investigate the effect of non-alcoholic fatty liver disease(NAFLD)induced by high-fat diet(HFD)on the kidneys of mice and the protective effect and mechanism of Xiayuxue Decoction.Methods A total of 25 healthy controls and 25 NAFLD patients who attended Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from September 2020 to September 2021 were enrolled,and the levels of total cholesterol(TC),triglyceride(TG),blood urea nitrogen(BUN),creatinine(Cr),and uric acid(UA)were measured.A total of 24 male C57BL/6 mice were randomly divided into low-fat diet(LFD)group,HFD group,and HFD+Xiayuxue Decoction group(XYXD group),with 8 mice in each group,and since week 13,XYXD was administered by gavage once a day for 6 weeks till the end of week 18.The level of TC,TG,BUN,and Cr were measured for each group.HE staining and oil red staining were used to observe the pathological changes of the liver and the kidneys;immunohistochemical double staining was used to measure the expression levels of CD68 and alpha-smooth muscle actin(α-SMA);quantitative real-time PCR was used to measure the expression levels of sterol regulatory element binding protein 1(SREBP1),fatty acid synthase(FASN),interleukin-6(IL-6),tumor necrosis factor-α(TNF-α),Desmin,and α-SMA in renal tissue;Western blot was used to measure the protein expression levels of SREBP1 and TNF-α.A one-way analysis of variance was used for comparison of continuous data between multiple groups,and the least significant difference t-test was used for pairwise comparison;the independent-samples t-test was used for comparison between two groups.Results Compared with the healthy controls,NAFLD patients showed significant increases in the levels of TC,TG,BUN,Cr,and UA(all P<0.05).Compared with the LFD group,the HFD group had significant increases in body weight,TC,TG,BUN,and Cr(all P<0.001),and compared with the HFD group,the XYXD group showed significant inhibition of the expression of TC,TG,BUN,and Cr(all P<0.001).Liver pathological examination showed that compared with the LFD group,the HFD group showed significant increases in hepatic steatosis and inflammatory infiltration,while the XYXD group showed significant alleviation of lesions.Renal pathological examination showed that compared with the LFD group,the HFD group had significant inflammatory infiltration,steatosis,and collagen formation in renal tissue,and compared with the HFD group,XYXD significantly alleviated inflammatory infiltration and inhibited steatosis and collagen formation.Quantitative real-time PCR showed that compared with the LFD group,the HFD group had significant increases in the relative mRNA expression levels of SREBP1,FASN,IL-6,TNF-α,Desmin,and α-SMA in renal tissue(all P<0.001),and compared with the HFD group,the XYXD group had significant reductions in the relative expression levels of these indicators(all P<0.001).Western blot showed that compared with the LFD group,the HFD group had significant increases in the protein expression levels of SREBP1 and TNF-α(P<0.05),and compared with the HFD group,the XYXD group had significant reductions in the protein expression levels of SREBP1 and TNF-α(P<0.05).Immunohistochemical staining showed that compared with the LFD group,the HFD group had significant increases in the positive staining or the double positive staining of α-SMA and CD68(P<0.05),and compared with the HFD group,the XYXD group showed significant reductions(P<0.05).Conclusion HFD can induce renal steatosis,inflammatory infiltration,and collagen formation,and XYXD might exert a protective effect on the kidneys by inhibiting the expression of macrophages and myofibroblasts in renal tissue.
5.Effects of different concentrations of lidocaine infiltration and analgesia in pleural cavity after lung cancer surgery on rehabilitation of patients
Cheng-Lin LI ; Zheng-Rui XIAN ; Le ZHANG ; Jing LIANG ; Shu LIU ; Rong QIU
Journal of Regional Anatomy and Operative Surgery 2024;33(1):69-72
Objective To explore the effects of different concentrations of lidocaine infiltration and analgesia in pleural cavity after lung cancer surgery on rehabilitation of patients.Methods A total of 86 patients with lung cancer were selected and divided into the high concentration group(43 cases)and low concentration group(43 cases)by random number table method.Patients in the high concentration group received injection of 2.0%lidocaine hydrochloride in pleural cavity through the epidural catheter 1st day after surgery,and patients in the low concentration group received injection of 1.5%lidocaine hydrochloride in pleural cavity.In addition,patients in the two groups were treated with patient-controlled intravenous analgesia after surgery.The first time of getting out of bed,first time of exhaustion,first time of defecation and hospital stay after surgery of the two groups were compared.The visual analogue scale(VAS)scores 6 hours,12 hours,24 hours and 48 hours after surgery,the occurrence of agitation during the postoperative awakening period,and the number of analgesic pump compressions and the dosage of analgesic drugs within 24 hours after surgery were compared.The incidence of adverse drug reactions 24 hours after surgery were recorded and the quality of recovery of patients 24 hours after surgery was evaluated by 40-item quality of recovery score(QoR-40).Results The first time of getting out of bed,first time of exhaustion,first time of defecation and hospital stay after operation of patients in the high concentration group were shorter than those in the low concentration group(P<0.05).The VAS scores of the two groups 12 hours and 24 hours after surgery were higher than those 6 hours after surgery(P<0.05),the VAS scores 24 hours and 48 hours after surgery were lower than those 12 hours after surgery(P<0.05),and the VAS scores 48 hours after surgery were lower than those 24 hours after surgery(P<0.05).The VAS scores 6 hours,12 hours,24 hours,and 48 hours after surgery of patients in the high concentration group were lower than those in the low concentration group(P<0.05).The occurrence of agitation during the postoperative awakening period,and the number of analgesic pump compressions and the dosage of analgesic drugs within 24 hours after surgery for patients in the high concentration group were lower/less than those in the low concentration group(P<0.05).There was no significant difference in the total incidence of adverse drug reactions between the two groups(P>0.05).The total QoR-40 score of patients in the high concentration group were higher than those in the low concentration group(P<0.05).Conclusion The use of 2.0%lidocaine infiltration and analgesia in pleural cavity for patients after lung cancer surgery can reduce the agitation during the awakening period,alleviate the postoperative pain,improve the quality of postoperative recovery,and promote the postoperative recovery of the patients,with certain safety.
6.Investigation and determination of relative correction factor of pre-vitamin D
Jieming SHI ; Cheng WANG ; Liwen ZHANG ; Shunling DONG ; Jian LE ; Song YUAN ; Yihong LU ; Dandan WANG ; Wankui XU ; Shufeng ZHENG
Drug Standards of China 2024;25(2):147-153
Objective:To determine the relative correction factor of pre-vitamin D and simplify the calculation method of vitamin D assay.Methods:By studying the calculation method of vitamin D content in drug standards of various countries,HPLC was used to determine the relative correction factor of pre-vitamin D,and the influencing factors of determination were investigated.Results:The relative correction factors of pre-vitamin D at 254 nm and 265nm wavelength were determined by statistical analysis of 7 laboratories in China.Conclusion:Using the pre-vi-tamin D relative correction factor method to calculate the total amount of vitamin D simplified the experimental steps can be simplified by the pre-vitamin D relative correction factor method to calculate the total amount of vitamin D and the random operating errors can be avoided.The method is rapid and accurate,and lay a solid foundation for further improving the standard of vitamin D preparations.
7.Analysis of Plasma Metabolic Profile in Children with Transfusion-Dependent Thalassemia
Xiao-Lan LIU ; Wen-Zhong LI ; Qian ZHANG ; Xue-Mei WANG ; Yu-Ru ZHOU ; Cheng-Gao WU ; Si-Min XIONG ; Ai-Ping LE ; Zhang-Lin ZHANG
Journal of Experimental Hematology 2024;32(2):525-531
Objective:To explore the plasma metabolomic characteristics of children with transfusion-dependent thalassemia(TDT),and reveal the changes of metabolic pattern in children with TDT.Methods:23 children with TDT who received regular blood transfusion in Ganzhou Women and Children's Health Care Hospital in 2021 were selected,and 11 healthy children who underwent physical examination during the same period were selected as the control group.The routine indexes between children with TDT and the control group were compared,and then the metabolic composition of plasma samples from children with TDT and the control group was detected by liquid chromatography-mass spectrometry.An OPLS-DA model was established to perform differential analysis on the detected metabolites,and the differential metabolic pathways between the two groups were analyzed based on the differential metabolites.Results:The results of routine testing showed that the indexes of ferritin,bilirubin,total bile acid,glucose and triglycerides in children with TDT were significantly higher than those in healthy controls,while hemoglobin and total cholesterol were significantly lower(all P<0.05).However there was no significant difference in lactate dehydrogenase between the two groups(P>0.05).Compared with the control group,190 differential metabolites(VIP>1)were identified in TDT children.Among them,168 compounds such as arginine,proline and glycocholic acid were significantly increased,while the other 22 compounds such as myristic acid,eleostearic acid,palmitic acid and linoleic acid were significantly decreased.The metabolic pathway analysis showed that the metabolic impact of TDT on children mainly focused on the upregulation of amino acid metabolism and downregulation of lipid metabolism.Conclusion:The amino acid and lipid metabolism in children with TDT were significantly changed compared with the healthy control group.This finding is helpful to optimize the treatment choice for children with TDT,and provides a new idea for clinical treatment.
8.Mechanism of Yanghe decoction inhibiting M2-type TAMs to promote migration invasion of triple-negative breast cancer cells based on EGF-EGFR signaling pathway
Cheng-Jie JIANG ; Le-Le TIAN ; Jin-Lei LUO ; Jian-Wei DOU ; Yan ZHANG
Chinese Pharmacological Bulletin 2024;40(11):2083-2092
Aim To explore the mechanism of Yanghe decoction-containing serum on the migration and inva-sion of MCF-7 breast cancer cells in a co-culture sys-tem with M2 tumor-associated macrophages(TAMs)based on the paracrine epidermal growth factor(EGF)/epidermal growth factor receptor(EGFR)sig-naling pathway.Methods The M2-type TAMs model was induced from THP-1 monocytic cell line through in vitro treatment with phorbol 12-myristate 13-acetate(PMA)and recombinant human macrophage colony-stimulating factor(M-CSF).The MCF-7 cells were co-cultured with M2-type TAMs using a Transwell non-contact co-culture system to evaluate their effects on migration and invasion.Subsequently,the cells were intervened with serum containing Yanghe decoction,and the proliferation of MCF-7 cells was detected using the CCK-8 assay,while their lateral migration ability was assessed through scratch assays.The invasion and vertical migration abilities of the cells were evaluated separately using Transwell assays,and the concentra-tion of EGF was measured using ELISA.Finally,the expression of EGFR,MCP-1,and MMP9 proteins was detected using Western blot.Results Compared to the control group,Yanghe decoction-containing serum in-hibited the proliferation of MCF-7 cells before and after co-culture.The serum reduced the scratch healing a-bility before and after co-culture and decreased their migration and invasion abilities.Additionally,Yanghe decoction-containing serum reduced the levels of EGF before and after co-culture and decreased the expres-sion of EGFR,MCP-1,and MMP9 proteins before and after+co-culture.Conclusion Yanghe decoction-containing serum can inhibit the migration and invasion of breast cancer MCF-7 cells before and after co-cul-ture with M2 TAMs.This effect may be related to the inhibition of the EGF-EGFR signaling pathway.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Blood pressure management and chronic complications in type 2 diabetes
Junheng ZHANG ; Siyu WANG ; Le CAI ; Wanting XIE ; Haoqing GU ; Qianqian YANG ; Xiaoyun ZHANG ; Xiaoli XU ; Xuan ZHAO ; Yu XU ; Jie CHENG
Chinese Journal of Endocrinology and Metabolism 2024;40(8):710-715
Hypertension heightens the risk of cardiovascular and renal complications in individuals with type 2 diabetes mellitus. Optimal blood pressure (BP) management is crucial for preventing these complications. This review consolidates evidence from clinical trials and major BP management guidelines to shed light on key aspects of hypertension management in diabetes. It addresses BP thresholds to initiate antihypertensive treatment, optimal BP control targets, recommended first-line antihypertensive edications, and BP monitoring plan for the prevention of chronic complications in type 2 diabetes.

Result Analysis
Print
Save
E-mail