1.Assocation of family environment and depressive symptoms among primary and secondary school students in Shanxi province
YANG Yang, YANG Le, QU Hongfei, YAO Dianrui, LI Zhenhao, GUO Dan
Chinese Journal of School Health 2025;46(1):86-91
Objective:
To explore the assocation of the family environment and depressive symptoms among primary and middle school students, so as to provide suggestions for further maximizing the utility of family environment in the growth of primary and secondary school students, as well as prevention and intervention of depressive symptoms among children and adolescents.
Methods:
From June to July 2024, through a multistage cluster random sampling method, 8 800 primary and middle school students aged 10 to 18 from 36 schools in 3 cities (Datong, Lvliang, Linfen) in Shanxi Province. A self designed questionnaire was used to conduct a family environment survey, including family socioeconomic conditions, family structure, family parenting behavior, family member health behavior, etc; and the depression symptoms of primary and secondary school students were investigated by Patient Health Questionnaire-9. The χ 2 test and binary Logistic regression to method were used to analyze the association of the family environment with depressive symptoms among primary and secondary school students, and to analyze gender and urban-rural heterogeneity in this association.
Results:
The detection rate of depressive symptoms among primary and middle school students was 46.7% ( n = 4 111 ). Among them, the detection rates of depressive symptoms for male and female students were 45.7% and 47.7% respectively, and the detection rates for rural and urban students were 48.0% and 44.9% respectively. The results of binary Logistic regression model showed that in the family environment, factors such as the father s education level (junior high school: OR =0.84), self assessed family socio economic status (average: OR =0.78, good: OR =0.80), parental support and understanding (yes: OR = 0.55 ), family atmosphere (harmonious: OR =0.66), living arrangement (living only with father or mother: OR =1.31, living with parents and grandparents: OR =1.19), and family rearing style (combining punishment and reward: OR =1.42, punishment only: OR =1.25) were related to depressive symptoms in primary and middle school students in Shanxi Province ( P <0.05). From the perspective of gender heterogeneity, the living arrangement (living only with father or mother: OR =1.67, others: OR =1.67) had a statistically significant association with depressive symptoms in male students ( P <0.05). From the perspective of urban rural heterogeneity, the living arrangement (living only with father or mother: OR =1.38) had a statistically significant association with depressive symptoms in rural primary and middle school students ( P <0.05).
Conclusions
The family environment has an important impact on depressive symptoms in primary and middle school students. Family functioning should be fully exerted to prevent depressive symptoms in primary and middle school students.
2.Effects of chronic exposure to low-frequency pulsed magnetic fields on contractility and morphology of the quadriceps muscle in healthy adults
Xuanqiang WANG ; Wenyang ZHANG ; Yang LI ; Weiqian KONG ; Wei LI ; Le WANG ; Zhongshan LI ; Shi BAI
Chinese Journal of Tissue Engineering Research 2025;29(8):1634-1642
BACKGROUND:Changes in skeletal muscle mass have been indicated in studies addressing the effects of low-frequency pulsed magnetic fields on the structure and morphology of the skeletal muscle,but no relevant studies have been conducted on the morphologic changes that occur after chronic exposure to the low-frequency pulsed magnetic field. OBJECTIVE:To observe the effects of chronic exposure to low-frequency pulsed magnetic fields on the maximal voluntary contraction and morphologic indicators of the quadriceps muscle of the leg,thereby providing a reference of muscle morphologic changes for the use of this technique as a strategy for muscle function improvement. METHODS:Seventy healthy subjects were recruited and randomly divided into a test group that received magnetic field stimulation and a control group that underwent sham treatment,with 35 subjects in each group,and the total duration of the trial was 4 weeks.The test group underwent low-frequency pulsed magnetic stimulation for 15 minutes every 48 hours,while the control group underwent sham treatment,with the same intervention interval and duration as the test group.After 4 weeks of intervention,changes in the maximum voluntary contraction value of the quadriceps muscle in different groups were observed,and B-mode ultrasonography was utilized as a means of assessment to observe changes in muscle thickness,muscle cross-sectional area,and pinnation angle indexes. RESULTS AND CONCLUSION:After 4 weeks of chronic exposure to low-frequency pulsed magnetic fields,68 subjects completed the test.The maximum voluntary contraction value of the quadriceps muscle in the test group increased significantly(P=0.000),and the increment was significantly higher than that of the control group(P=0.008).Three indexes related to muscle morphology in the test group were significantly higher than the pre-test values(P=0.000),while in the control group,muscle thickness showed a significant reduction(P=0.020),there was no significant change in the pinnation angle,but a significant increase in the cross-sectional area(P=0.000).Intergroup comparisons revealed that the three indicators related to muscle morphology,including muscle thickness(P=0.012),pinnation angle(P=0.003),and cross-sectional area(P=0.049),were significantly higher in the test group than in the control group.The above data confirmed that the maximum voluntary contraction of the quadriceps muscle was significantly increased in healthy adults after 4 weeks of chronic exposure to the low-frequency pulsed magnetic field,and significant increases in the three muscle morphometric indices of muscle thickness,cross-sectional area,and pinnation angle were observed in the test group,providing a basis of muscle tissue morphology for the use of this technique as an exercise alternative and medical treatment strategy for muscle improvement.
3.ESCRT Mechanism-mediated Repair of Plasma Membrane Damage Induced by Regulatory Cell Death
Tian-Yang FENG ; Le DENG ; Gou XU ; Li LI ; Miao-Miao GUO
Progress in Biochemistry and Biophysics 2025;52(5):1099-1112
The plasma membrane (PM) plays an essential role in maintaining cell homeostasis, therefore, timely and effective repair of damage caused by factors such as mechanical rupture, pore-forming toxins, or pore-forming proteins is crucial for cell survival. PM damage induces membrane rupture and stimulates an immune response. However, damage resulting from regulated cell death processes, including pyroptosis, ferroptosis, and necroptosis, cannot be repaired by simple sealing mechanisms and thus, requires specialized repair machinery. Recent research has identified a PM repair mechanism of regulated cell death-related injury, mediated by the endosomal sorting complexes required for transport (ESCRT) machinery. Here, we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury, with particular focus on processes related to regulated cell death. This overview, along with continued research in this field, may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways.
4.Establishment of a standardized management model for postoperative anti-osteoporosis medication in patients with brittle fractures
Hao LIU ; Yinglin YANG ; Le CAI ; Shu LI ; Man ZHU ; Mengli CHEN
China Pharmacy 2025;36(15):1926-1930
OBJECTIVE To investigate the establishment and promotion of a new standardized management model for anti- osteoporosis medication after fragility fracture surgery by resident clinical pharmacists, and provide references for resident pharmacists to carry out clinical pharmaceutical services. METHODS From July 2023 to March 2024,595 post-brittle fracture surgery patients were enrolled. Using the PDCA (plan-do-check-act) cycle,resident clinical pharmacists identified issues and conducted investigations in clinical practice. Through integrating clinical pharmacist intervention services before, during and after treatment, a medication treatment pathway was developed, thereby establishing a standardized management model for anti- osteoporosis treatment following fragility fracture surgery. Leveraging the National Brittle Fracture Big Data Platform (under the National Clinical Research Center for Orthopedics and Sports Rehabilitation), a dedicated data module was constructed, providing big data support to evaluate the efficacy of this pharmaceutical care model. RESULTS Continuous PDCA cycle driven improvements significantly increased the proportion of osteoporosis diagnosis (from 9% before intervention to 81%) and proportion of drug treatment (from 4% to 75%).The proportions of bone density and bone metabolism testing also rose markedly,positively impacting long-term patient outcomes. CONCLUSIONS The establishment of a standardized management model for anti- osteoporosis treatment following fragility fracture surgery by resident clinical pharmacists has enhanced clinicians’ diagnostic and therapeutic capabilities for osteoporosis, ensures rational medication use in osteoporosis patients, and demonstrates significant potential for widespread adoption and application.
5.Effect of tritiated water on the immune system of zebrafish and mechanism analysis
Xiaofang GENG ; Chang LIU ; Yinyin YANG ; Yang ZHANG ; Le ZHAO ; Bingqing ZENG ; Chen WANG ; Pengyu LIN ; Yulong LIU
Chinese Journal of Radiological Health 2025;34(3):354-362
Objective To investigate the effect of tritiated water on the immune system of zebrafish and its potential molecular mechanism. Methods Zebrafish embryos (2.5 to 3 hours post-fertilization [hpf]) were exposed to 3.7 × 104 Bq/mL tritiated water (tritiated water group), and those exposed to E3 culture medium were used as the control group. The mortality rate, hatching rate, deformity rate, heart rate, body length, yolk sac area, neutrophil count in the tail, immune-related gene expression, and immune-related protein expression of zebrafish in the two groups were determined. Then transcriptome technology was used to further analyze the possible mechanism of tritiated water affecting the immune system of zebrafish. Results Compared with the control group, zebrafish at 72 hpf in the tritiated water group had no significant changes in the mortality rate, hatching rate, deformity rate, body length, and yolk sac area((t = 0.9045, 0.5000, 1.0000, 0.7238, 0.0337, P = 0.4169, 0.6433, 0.3739, 0.4785, 0.9735), but had significantly increased heart rate(t = 4.575,P = 0.002). At 4 days post-fertilization (dpf), the neutrophil count in the tail of zebrafish in the tritiated water group was significantly increased(t = 2.563,P = 0.0196), the mRNA expression of TNF-α was significantly decreased(t = 2.891, P = 0.045), the protein expression of nuclear factor-kappa B (NF-κB) was significantly increased(t = 3.848, P = 0.018), and the protein expression of NLRP3 was significantly decreased(t = 14.98, P = 0.001). At 7 dpf, the neutrophil count in the tail and the protein expression levels of NF-κB, NLRP3, and interleukin-1β were significantly decreased(t = 3.772, 7.048, 15.620, 4.423, P = 0.014, 0.002, 0.0001, 0.012). Transcriptome sequencing revealed that differentially expressed genes were mainly enriched in the “neutrophil activation” and “platelet activation pathways” at 4 dpf and in the “neutrophil apoptosis”, “ferroptosis”, and “necroptosis” pathways at 7 dpf. Conclusion Tritiated water exposure induces a temporally dynamic immune response in zebrafish, potentially affecting immune homeostasis by regulating neutrophil activation and apoptosis, as well as the expression of NF-κB and NLRP3.
6.The Development and Application of Chatbots in Healthcare: From Traditional Methods to Large Language Models
Zixing WANG ; Le QI ; Xiaodan LIAN ; Ziheng ZHOU ; Aiwei MENG ; Xintong WU ; Xiaoyuan GAO ; Yujie YANG ; Yiyang LIU ; Wei ZHAO ; Xiaolin DIAO
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1170-1178
With the rapid advancement of artificial intelligence technology, chatbots have shown great potential in the healthcare sector. From personalized health advice to chronic disease management and psychological support, chatbots have demonstrated significant advantages in improving the efficiency and quality of healthcare services. As the scope of their applications expands, the relationship between technological complexity and practical application scenarios has become increasingly intertwined, necessitating a more comprehensive evaluation of both aspects. This paper, from the perspective of he althcare applications, systematically reviews the technological pathways and development of chatbots in the medical field, providing an in-depth analysis of their performance across various medical scenarios. It thoroughly examines the advantages and limitations of chatbots, aiming to offer theoretical support for future research and propose feasible recommendations for the broader adoption of chatbot technologies in healthcare.
7.The combination of berberine and cinnamon polyphenol can improve glucose metabolism in T2DM rats through Bas-TGR5-GLP-1
Wan LIU ; Fei LIANG ; Tie-quan CAI ; Ying LI ; Le LI ; Shu-cai YANG ; Ying LIU ; Yan ZHAO
Acta Pharmaceutica Sinica 2024;59(1):135-142
Berberine (BBR) is the main pharmacological active ingredient of Coptidis, which has hypoglycemic effect, but its clinical application is limited due to its poor oral bioavailability. Polyphenols, derived from cinnamon, are beneficial for type 2 diabetes mellitus (T2DM). The combination of both may have an additive effect. The aim of this study was to investigate the hypoglycemic effect and mechanism of combined medication in diabetic rats. The modeling rats were randomly divided into 5 groups (berberine group, cinnamon group, combined group, metformin group, diabetic control group) and normal control group. The animal experiments were approved by the Animal Ethics Committee (approval number: HMUIRB2022003). The subjects were given orally, and the control group was given equal volume solvent and body weight was measured weekly. Thirty days after administration, oral glucose tolerance test and insulin sensitivity test were performed, and fasting blood glucose (FBG), glycated serum protein (GSP), and serum insulin (INS) levels were detected; high-throughput sequencing technology was used to detect intestinal microbiota structure; real-time quantitative PCR (RT-qPCR) and Western blot were used to detect G protein-coupled receptor 5 (TGR5) and glucagon-like peptide-1 (GLP-1) expression levels. The results showed that, compared with the diabetic control group, the levels of FBG (
8.Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus.
Jiamei LE ; Yilong CHEN ; Wei YANG ; Ligong CHEN ; Jianping YE
Acta Pharmaceutica Sinica B 2024;14(2):437-454
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
9.Role of podoplanin in hepatic stellate cell activation and liver fibrosis
Zhiyi WANG ; Guangyue YANG ; Wei ZHANG ; Yaqiong PU ; Xin ZHAO ; Wenting MA ; Xuling LIU ; Liu WU ; Le TAO ; Cheng LIU
Journal of Clinical Hepatology 2024;40(3):533-538
ObjectiveTo investigate the role and mechanism of podoplanin (PDPN) in hepatic stellate cell (HSC) activation and liver fibrosis. MethodsLiver biopsy samples were collected from 75 patients with chronic hepatitis B who attended Department of Infectious Diseases, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, for the first time from September 2019 to June 2022, and RT-PCR and immunohistochemistry were used to measure the expression of PDPN in liver tissue of patients in different stages of liver fibrosis. A total of 12 male C57/BL6 mice were randomly divided into control group and model group. The mice in the model group were given intraperitoneal injection of 10% CCl4, and those in the control group were injected with an equal volume of olive oil, for 6 weeks. HE staining and Sirius Red staining were used to observe liver histopathological changes; primary mouse liver cells were separated to measure the mRNA expression of PDPN in various types of cells; primary mouse HSCs were treated with PDPN protein, followed by treatment with the NF-κB inhibitor BAY11-708, to measure the expression of inflammatory factors in HSCs induced by PDPN. The independent-samples t test was used for comparison of normally distributed continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Spearman correlation analysis was used to investigate data correlation. ResultsAs for the liver biopsy samples, there was a relatively low mRNA expression level of PDPN in normal liver, and there was a significant increase in the mRNA expression level of PDPN in liver tissue of stage S3 or S4 fibrosis (all P<0.001). Immunohistochemical staining showed that PDPN was mainly expressed in the fibrous septum and the hepatic sinusoid, and the PDPN-positive area in S4 liver tissue was significantly higher than that in S0 liver tissue (t=8.892, P=0.001). In normal mice, PDPN was mainly expressed in the hepatic sinusoid, and there was a significant increase in the expression of PDPN in CCl4 model mice (t=0.95, P<0.001), mainly in the fibrous septum. RT-PCR showed a significant increase in the mRNA expression of PDPN in the CCl4 model mice (t=11.25, P=0.002). Compared with hepatocytes, HSCs, Kupffer cells, and bile duct endothelial cells, hepatic sinusoidal endothelial cells showed a significantly high expression level of PDPN (F=20.56, P<0.001). Compared with the control group, the primary mouse HSCs treated by PDPN protein for 15 minutes showed significant increases in the mRNA expression levels of the inflammation-related factors TNFα, CCL3, CXCL1, and CXCR1 (all P<0.05), and there were significant reductions in the levels of these indicators after treatment with BAY11-7082 (all P<0.05). ConclusionThere is an increase in the expression of PDPN mainly in hepatic sinusoidal endothelial cells during liver fibrosis, and PDPN regulates HSC activation and promotes the progression of liver fibrosis via the NF-κB signaling pathway.
10. Exploring mechanism of hypolipidemic effect of total Ligustrum robustum (Roxb. ) Blume on hyperlipidemic golden hamsters based on intestinal flora
Chen-Xi XU ; Rui-Le PAN ; Meng-Chen DONG ; Zhi-Hong YANG ; Xiao-Ya LI ; Wen JIN ; Run-Mei YANG
Chinese Pharmacological Bulletin 2024;40(3):476-483
Aim To evaluate the hypolipidemic effect of the total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) on hyperlipidemic golden hamsters and explore its regulatory effect on intestinal flora. Methods Sixty hamsters were randomly divided into a control group, a model group, a positive drug group, LRTPG-L group, LRTPG-M group, and LRTPG-H group. After the successful induction of the model by high-fat diet, the animals were continuously administered for four weeks, and their blood lipids and liver lipids were detected. The formed feces from the colorectal region of the hamsters in the control group, model group and LRTPG-H group were collected for 16S rDNA sequencing. Results LRTPG reduced serum TG, TC, LDL-C and liver TG, TC concentrations significantly in hyperlipidemic hamsters. The results of the intestinal microbiota sequencing showed that compared to the control group, LRTPG significantly decreased the relative abundance of the phylum Firmicutes and increased the relative abundance of the phylum Bacteroidetes and Verrucomicrobia (P < 0.01) at the phylum level. At the family level, LRTPG significantly increased the relative abundance of Christensenellaceae, Peptococcaceae, and Verrucomicrobiaceae (P < 0.05 or P < 0.01). At the genus level, LRTPG significantly increased the relative abundance of Oscillospira, Oscillibacter, Flavonifractor and Akkermansiaceae (P < 0.05 or P < 0.01). These changes in the flora were beneficial to the hypolipidemic effect of LRTPG. Conclusion LRTPG may exert its hypolipidemic effect by improving the intestinal flora disorder caused by a high-fat diet in golden hamsters.


Result Analysis
Print
Save
E-mail