1.Gene expression and immunolocalization of chitin deacetylase BmCDA2 in silkworm.
Yun HE ; Yifei CHEN ; Qinglang WANG ; Ziyu ZHANG ; Haonan DONG ; Taixia SHEN ; Yong HOU ; Jing GONG
Chinese Journal of Biotechnology 2023;39(4):1655-1669
Deacetylation of chitin is closely related to insect development and metamorphosis. Chitin deacetylase (CDA) is a key enzyme in the process. However, to date, the CDAs of Bombyx mori (BmCDAs), which is a model Lepidopteran insect, were not well studied. In order to better understand the role of BmCDAs in the metamorphosis and development of silkworm, the BmCDA2 which is highly expressed in epidermis was selected to study by bioinformatics methods, protein expression purification and immunofluorescence localization. The results showed that the two mRNA splicing forms of BmCDA2, namely BmCDA2a and BmCDA2b, were highly expressed in the larval and pupal epidermis, respectively. Both genes had chitin deacetylase catalytic domain, chitin binding domain and low density lipoprotein receptor domain. Western blot showed that the BmCDA2 protein was mainly expressed in the epidermis. Moreover, fluorescence immunolocalization showed that BmCDA2 protein gradually increased and accumulated with the formation of larval new epidermis, suggesting that BmCDA2 may be involved in the formation or assembly of larval new epidermis. The results increased our understandings to the biological functions of BmCDAs, and may facilitate the CDA study of other insects.
Animals
;
Bombyx/metabolism*
;
Metamorphosis, Biological/genetics*
;
Larva/metabolism*
;
Gene Expression
;
Insect Proteins/metabolism*
;
Chitin
2.Prokaryotic expression, polyclonal antibody preparation, spatio-temporal expression profile and functional analysis of c-Myc of Helicoverpa armigera (Lepidoptera: Noctuidae).
Qian SUO ; Xiaoyan SUN ; Ying ZHANG ; Yujing WANG ; Kaiyu LIU ; Hong YANG ; Huazhu HONG ; Jianxin PENG ; Rong PENG
Chinese Journal of Biotechnology 2023;39(7):2730-2742
c-Myc protein encoded by c-Myc (cellular-myelocytomatosis viral oncogene) gene regulates the related gene expression through the Wnt/β-catenin signaling pathway, and has received extensive attention in recent years. The purpose of this study was to express Helicoverpa armigera c-Myc gene (Ha-c-Myc) by using prokaryotic expression system, prepare the polyclonal antibody, examine the spatio-temporal expression profile of Ha-c-Myc, and investigate the possible function of Ha-c-Myc in regulating H. armigera sterol carrier protein-2 (SCP-2) gene expression. The Ha-c-Myc gene was amplified by PCR and cloned into a prokaryotic expression plasmid pET-32a(+). The recombinant plasmid pET-32a-Ha-c-Myc was transformed into Escherichia coli BL21. IPTG was used to induce the expression of the recombinant protein. Protein was purified by Ni2+-NTA column and used to immunize New Zealand rabbits for preparing the polyclonal antibody. The Ha-c-Myc expression levels in different developmental stages (egg, larva, prepupa, pupa, and adult) of H. armigera and different tissues (midgut, fat body, head, and epidermis) of the prepupa were determined by real-time quantitative reverse transcription PCR (qRT-PCR). Ha-c-Myc siRNA was synthesized and transfected into H. armigera Ha cells. The relative mRNA levels of Ha-c-Myc and HaSCP-2 in Ha cells were detected by qRT-PCR. Results showed that the pET-32a-Ha-c-Myc recombinant plasmid was constructed. The soluble Ha-c-Myc protein of about 65 kDa was expressed in E. coli. The polyclonal antibody was prepared. Western blotting analysis suggested that the antibody had high specificity. Enzyme linked immunosorbent assay (ELISA) showed that the titer of the antibody was high. Ha-c-Myc gene expressed at all developmental stages, with high levels in the early and late instars of larva, and the prepupal stage. Tissue expression profiles revealed that Ha-c-Myc expressed in various tissues of prepupa, with high expression level in the midgut, but low levels in the epidermis and fat body. RNAi results showed that the knockdown of Ha-c-Myc expression significantly affected transcription of HaSCP-2, leading to a 50% reduction in HaSCP-2 mRNA expression level. In conclusion, the Ha-c-Myc was expressed through a prokaryotic expression system, and the polyclonal anti-Ha-c-Myc antibody was obtained. Ha-c-Myc may promote the expression of HaSCP-2 and play an important role in the lipid metabolism of H. armigera. These results may facilitate further study on the potential role and function mechanism of Ha-c-Myc in H. armigera and provide experimental data for exploring new targets of green pesticides.
Animals
;
Rabbits
;
Escherichia coli/metabolism*
;
Enzyme-Linked Immunosorbent Assay
;
Moths/genetics*
;
Blotting, Western
;
Larva/genetics*
;
Isoantibodies/metabolism*
;
Antibody Specificity
3.Circular RNA ame_circ_000115 regulates expression of genes in larval gusts of Apis mellifera ligustica stressed by Ascosphaera apis.
Yaping YE ; Jie WANG ; Jiaxin ZHANG ; Kaiyao ZHANG ; Xiaoyu GU ; Yutong YAO ; Zhongmin REN ; Yang ZHANG ; Dafu CHEN ; Rui GUO
Chinese Journal of Biotechnology 2023;39(1):217-230
Circular RNAs (circRNAs) are a new class of non-coding RNAs, which have been confirmed to regulate insect gene expression and immune response through multiple manners such as competing endogenous RNA (ceRNA) regulatory network. Currently, function of circRNA in honey bee immune response remains unclear. In this study, PCR and Sanger sequencing were performed to validate the back splicing (BS) site of ame_circ_000115 (in short ac115). RT-qPCR was used to detect the expression profile of ac115 in larval guts of Apis mellifera ligustica stressed by Ascosphaera apis. Dual-luciferase reporter gene assay was conducted to verify the binding relationship between ac115 and ame-miR-13b. Interference of ac115 in larval guts was carried out by feeding specific siRNA, followed by determination of the effect of ac115 interference on expression of six genes relevant to host immune response. The results confirmed the existence of BS site within ac115. Compared with the un-inoculated group, the expression of ac115 in 4-day-old larval gut of the A. apis-inoculated group was up-regulated with extreme significance (P < 0.000 1), while that in 5- and 6-day-old larval guts were significantly up-regulated (P < 0.05). The brightness of specific band for ac115 in 4-, 5- and 6-day-old larval guts of the siRNA-circ_000115-fed group gradually became weak, whereas that of the siRNA-scrambl-fed group was pretty high without obvious variation. Compared with that of the siRNA-scramble-fed group, the expression of ac115 in 4-day-old larval gut of the siRNA-circ_000115-fed group was significantly down-regulated (P < 0.05), whereas that of the 5- and 6-day-old larval guts were down-regulated with extreme significance (P < 0.001). Ame-miR-13b was truly existed and expressed in A. m. ligustica larval guts, and there was true binding relationship between ac115 and ame-miR-13b. Compared with that of the siRNA-scramble-fed group, the expression of antimicrobial peptide genes hymenoptaecin and abaecin in 6-day-old larval gut of the siRNA-circ_000115-fed group was significantly up-regulated (P < 0.05), while that of ecdysone receptor (Ecr) was down-regulated with extreme significance (P < 0.01). These results indicate that ac115 is truly expressed in A. m. ligustica larval guts, BS site truly exists within ac115, and effective interference of ac115 in A. m. ligustica larval guts can be achieved via feeding siRNA. Moreover, ac115 potentially regulates Ecr expression through adsorption of ame-miR-13b and expression of hymenoptaecin and abaecin using a non-ceRNA manner, further participating in host stress-response.
Bees/genetics*
;
Animals
;
Larva/metabolism*
;
RNA, Circular/genetics*
;
RNA, Small Interfering/genetics*
;
MicroRNAs/genetics*
4.Hepatotoxicity and mechanism of Rhododendri Mollis Flos based on zebrafish model.
Mei-Lin CHEN ; Zhi-Qi LI ; Qi-Qi FAN ; Si-Min GUO ; Qiong CAI ; Rui-Chao LIN ; Jia-Rui WU ; Chong-Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(1):140-147
This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 μg·mL~(-1) of the absolute lethal concentration and 448 μg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.
Animals
;
Zebrafish/genetics*
;
Apoptosis
;
Larva
;
Chemical and Drug Induced Liver Injury
5.Characterization and immunofluorescence localization analysis of carboxypeptidase A in molt fluid of silkworm.
Yuhao ZHANG ; Yuejing CHENG ; Lingzhen YANG ; Qinglang WANG ; Jing GONG ; Yong HOU
Chinese Journal of Biotechnology 2023;39(12):4950-4964
Molting is an important physiological phenomenon of many metamorphosis insects, during which the old and new epidermis are separated by enzymes present in the molting fluid. Various proteomic studies have discovered the presence of Bombyx mori carboxypeptidase A (Bm-CPA) in the molting fluid of silkworm, but its function remains unclear. In order to better understand the role of Bm-CPA in the molting process of silkworm, Bm-CPA was analyzed by bioinformatics analysis, real-time fluorescence quantitative PCR, antibody preparation, immunofluorescence staining, and expression in Pichia pastoris. The results showed that Bm-CPA had a conserved M14 zinc carboxypeptidase domain and glycosylation site. Its expression was regulated by ecdysone 20E, and large expression was observed in the epidermis of the upper cluster stage. Immunofluorescence staining showed that Bm-CPA was enriched in the epidermis during the molting stage, and the inhibitor of Bm-CPA led to the larval death due to the inability to molt. We also successfully obtained a large number of recombinant Bm-CPA proteins by Pichia pastoris expression in vitro. These results may facilitate further understanding the molting development process of silkworm.
Animals
;
Molting/genetics*
;
Bombyx/genetics*
;
Carboxypeptidases A/metabolism*
;
Proteomics
;
Larva/metabolism*
;
Fluorescent Antibody Technique
;
Insect Proteins/metabolism*
6.Acute Developmental Toxicity of Panax notoginseng in Zebrafish Larvae.
Rong-Rong WANG ; Ting LI ; Lei ZHANG ; Zheng-Yan HU ; Li ZHOU ; Le-Tian SHAN ; Jia-Wei HUANG ; Lan LI
Chinese journal of integrative medicine 2023;29(4):333-340
OBJECTIVE:
To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay.
METHODS:
Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb.
RESULTS:
The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN.
CONCLUSION
This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.
Animals
;
Zebrafish/genetics*
;
Saponins/pharmacology*
;
Panax notoginseng/chemistry*
;
Larva
;
Sequence Analysis, RNA
7.microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish
Chang Woo KIM ; Ji Hyuk HAN ; Ling WU ; Jae Young CHOI
Yonsei Medical Journal 2018;59(1):141-147
PURPOSE: microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. MATERIALS AND METHODS: miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 µM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. RESULTS: Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. CONCLUSION: Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration.
Animals
;
Animals, Genetically Modified
;
Cell Count
;
Gene Expression Profiling
;
Gene Expression Regulation/drug effects
;
Gene Knockdown Techniques
;
Green Fluorescent Proteins/metabolism
;
Hair Cells, Auditory/drug effects
;
Hair Cells, Auditory/physiology
;
Larva/drug effects
;
Larva/genetics
;
MicroRNAs/genetics
;
MicroRNAs/metabolism
;
Morpholinos/pharmacology
;
Neomycin/toxicity
;
Regeneration/drug effects
;
Regeneration/genetics
;
Zebrafish/genetics
8.Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila.
Ying SUN ; Yanyan JIA ; Yifeng GUO ; Fangyi CHEN ; Zhiqiang YAN
Neuroscience Bulletin 2018;34(6):939-950
Drosophila dEAAT2, a member of the excitatory amino-acid transporter (EAAT) family, has been described as mediating the high-affinity transport of taurine, which is a free amino-acid abundant in both insects and mammals. However, the role of taurine and its transporter in hearing is not clear. Here, we report that dEAAT2 is required for the larval startle response to sound stimuli. dEAAT2 was found to be enriched in the distal region of chordotonal neurons where sound transduction occurs. The Ca imaging and electrophysiological results showed that disrupted dEAAT2 expression significantly reduced the response of chordotonal neurons to sound. More importantly, expressing dEAAT2 in the chordotonal neurons rescued these mutant phenotypes. Taken together, these findings indicate a critical role for Drosophila dEAAT2 in sound transduction by chordotonal neurons.
Acoustic Stimulation
;
Action Potentials
;
genetics
;
Animals
;
Animals, Genetically Modified
;
Auditory Pathways
;
physiology
;
Calcium
;
metabolism
;
Drosophila
;
genetics
;
Drosophila Proteins
;
genetics
;
metabolism
;
Excitatory Amino Acid Transporter 2
;
genetics
;
metabolism
;
Hearing
;
genetics
;
Larva
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
metabolism
9.Repeated Failure in Reward Pursuit Alters Innate Drosophila Larval Behaviors.
Yue FEI ; Dikai ZHU ; Yixuan SUN ; Caixia GONG ; Shenyang HUANG ; Zhefeng GONG
Neuroscience Bulletin 2018;34(6):901-911
Animals always seek rewards and the related neural basis has been well studied. However, what happens when animals fail to get a reward is largely unknown, although this is commonly seen in behaviors such as predation. Here, we set up a behavioral model of repeated failure in reward pursuit (RFRP) in Drosophila larvae. In this model, the larvae were repeatedly prevented from reaching attractants such as yeast and butyl acetate, before finally abandoning further attempts. After giving up, they usually showed a decreased locomotor speed and impaired performance in light avoidance and sugar preference, which were named as phenotypes of RFRP states. In larvae that had developed RFRP phenotypes, the octopamine concentration was greatly elevated, while tβh mutants devoid of octopamine were less likely to develop RFRP phenotypes, and octopamine feeding efficiently restored such defects. By down-regulating tβh in different groups of neurons and imaging neuronal activity, neurons that regulated the development of RFRP states and the behavioral exhibition of RFRP phenotypes were mapped to a small subgroup of non-glutamatergic and glutamatergic octopaminergic neurons in the central larval brain. Our results establish a model for investigating the effect of depriving an expected reward in Drosophila and provide a simplified framework for the associated neural basis.
Acetates
;
pharmacology
;
Animals
;
Animals, Genetically Modified
;
Avoidance Learning
;
physiology
;
Biogenic Amines
;
metabolism
;
Conditioning, Operant
;
physiology
;
Drosophila
;
physiology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
drug effects
;
physiology
;
Instinct
;
Larva
;
physiology
;
Locomotion
;
drug effects
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
physiology
;
Octopamine
;
metabolism
;
RNA Interference
;
physiology
;
Reward
;
Statistics, Nonparametric
;
Transcription Factors
;
genetics
;
metabolism
10.Natriuretic peptide precursor C coding gene contributes to zebrafish angiogenesis.
Jing-Jing ZHANG ; Xin WANG ; Dong LIU
Acta Physiologica Sinica 2017;69(1):11-16
This study aimed to investigate the expression of the natriuretic peptide precursor C coding gene nppc and its role in angiogenesis during embryonic period of the zebrafish. Whole mount in situ hybridization was performed to detect the expression pattern of nppc. nppc specific morpholino and nppc mRNA were injected respectively into the one-cell stage embryo to specifically knock-down and rescue the expression of nppc in Tg (flk1:GFP) and Tg (fli1a:nGFP) transgenic lines. The morphology and endothelial cell number of intersegmental vessel (ISV) were analyzed after imaging using the laser scanning confocal microscope. The results revealed that nppc was expressed in the brain, heart and vasculature of zebrafish larvae at 24 and 48 hours post-fertilization (hpf). Knock-down of nppc affected the development of ISV. Endothelial cell number was reduced after the knock-down of nppc. These results suggest that nppc controls zebrafish angiogenesis by affecting the endothelial cell proliferation and migration.
Animals
;
Animals, Genetically Modified
;
Cell Movement
;
Cell Proliferation
;
Endothelial Cells
;
physiology
;
Gene Knockdown Techniques
;
Heart
;
physiology
;
Larva
;
Natriuretic Peptides
;
genetics
;
physiology
;
Neovascularization, Physiologic
;
RNA, Messenger
;
Zebrafish
;
genetics
;
physiology
;
Zebrafish Proteins
;
genetics
;
physiology

Result Analysis
Print
Save
E-mail