1.Association of leukocyte telomere length with the risk of digestive diseases: A large-scale cohort study.
Hongqun YANG ; Lanlan CHEN ; Yahui LIU
Chinese Medical Journal 2025;138(1):60-67
BACKGROUND:
Leukocyte telomere length (LTL) shortening, a biomarker of telomere attrition, has been linked to multiple diseases. However, the relationship between LTL and digestive diseases remains uncertain. This study aimed to investigate the association between LTL and the risk of digestive diseases.
METHODS:
A cohort analysis of over 500,000 participants from the UK Biobank (UKB) between 2006 and 2021 was conducted to estimate the associations of LTL with more than 90 common digestive diseases. LTL was quantified using multiplex quantitative polymerase chain reaction, and cases of each disease were determined according to inpatient and primary care data. Multivariable Cox proportional hazards regression analysis was used to evaluate the associations of LTL with the risk of digestive diseases. Furthermore, such associations were also evaluated after stratification by sex and ethnicity.
RESULTS:
After a mean follow-up time of 11.8 years, over 20 International Classification of Diseases, 10th Revision ( ICD-10 ) codes were showed to be associated with telomere attrition. LTL shortening is associated with an increased risk of several digestive diseases, including gastroesophageal reflux disease (K21: hazard ratio [HR] = 1.30, 95% confidence interval [95% CI]: 1.19-1.42), esophageal ulcer (K221: HR = 1.81, 95% CI: 1.22-2.71), Barrett's esophagus (K227: HR = 1.58, 95% CI: 1.14-2.17), gastritis (K29: HR = 1.39, 95% CI: 1.26-1.52), duodenal ulcer (K26: HR = 1.55, 95% CI: 1.14-2.12), functional dyspepsia (K30X: HR = 1.36, 95% CI: 1.06-1.69), non-alcoholic fatty liver disease (NAFLD) (K760: HR = 1.39, 95% CI: 1.09-1.78), liver cirrhosis (K74: HR = 4.73, 95% CI: 3.27-6.85), cholangitis (K830: HR = 2.55, 95% CI: 1.30-5.00), and hernia (K43: HR = 1.50, 95% CI: 1.17-1.94; K44: HR = 1.29, 95% CI: 1.17-1.42). The risk of rectal polyps (K621: HR = 0.77, 95% CI: 0.63-0.92) decreased per unit shortening of LTL.
CONCLUSIONS
This study suggests that LTL shortening is associated with an increased risk of most digestive diseases except for rectal polyps. These findings may provide some clues for understanding the pathogenesis of digestive diseases.
Humans
;
Male
;
Female
;
Middle Aged
;
Cohort Studies
;
Leukocytes/metabolism*
;
Telomere/genetics*
;
Proportional Hazards Models
;
Adult
;
Digestive System Diseases/genetics*
;
Aged
;
Risk Factors
;
Telomere Shortening
3.Identification of a JAK-STAT-miR155HG positive feedback loop in regulating natural killer (NK) cells proliferation and effector functions.
Songyang LI ; Yongjie LIU ; Xiaofeng YIN ; Yao YANG ; Xinjia LIU ; Jiaxing QIU ; Qinglan YANG ; Yana LI ; Zhiguo TAN ; Hongyan PENG ; Peiwen XIONG ; Shuting WU ; Lanlan HUANG ; Xiangyu WANG ; Sulai LIU ; Yuxing GONG ; Yuan GAO ; Lingling ZHANG ; Junping WANG ; Yafei DENG ; Zhaoyang ZHONG ; Youcai DENG
Acta Pharmaceutica Sinica B 2025;15(4):1922-1937
The Janus kinase/signal transducers and activators of transcription (JAK-STAT) control natural killer (NK) cells development and cytotoxic functions, however, whether long non-coding RNAs (lncRNAs) are involved in this pathway remains unknown. We found that miR155HG was elevated in activated NK cells and promoted their proliferation and effector functions in both NK92 and induced-pluripotent stem cells (iPSCs)-derived NK (iPSC-NK) cells, without reliance on its derived miR-155 and micropeptide P155. Mechanistically, miR155HG bound to miR-6756 and relieved its repression of JAK3 expression, thereby promoting the JAK-STAT pathway and enhancing NK cell proliferation and function. Further investigations disclosed that upon cytokine stimulation, STAT3 directly interacts with miR155HG promoter and induces miR155HG transcription. Collectively, we identify a miR155HG-mediated positive feedback loop of the JAK-STAT signaling. Our study will also provide a power target regarding miR155HG for improving NK cell generation and effector function in the field of NK cell adoptive transfer therapy against cancer, especially iPSC-derived NK cells.
4.Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.
Kai WANG ; Duanfang CAO ; Lanlan LIU ; Xiaoyi FAN ; Yihuan LIN ; Wenting HE ; Yunze ZHAI ; Pingyong XU ; Xiyun YAN ; Haikun WANG ; Xinzheng ZHANG ; Pengyuan YANG
Frontiers of Medicine 2025;19(3):493-506
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Single-Domain Antibodies/immunology*
;
Spike Glycoprotein, Coronavirus/metabolism*
;
SARS-CoV-2/immunology*
;
Animals
;
Humans
;
Antibodies, Neutralizing/immunology*
;
Camelus
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Angiotensin-Converting Enzyme 2
5.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
6.Study on Optimization of spray Drying Process of Banlangen Formula Granules
Lanlan ZHANG ; Wenting SHI ; Weimei CHEN ; Zan YANG ; Xingpeng HUANG ; Qingqing TIAN ; Zheng ZHANG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):202-210
Objective To optimize the spray drying process of Banlangen(Isatidis Radix)formula granules based on quality by design(QbD)concept.Methods Using powder yield and the contents of uridine,adenosine,guanosine,and(R,S)-goitron as the critical quality attributes(CQAs),Plackett-Burman design was used to screen out critical process parameters(CPPs)for inlet temperature,spray pressure,liquid temperature,pump speed,and liquid relative density.The central-composite design(CCD)test was used to optimize the CPPs,which were screened.Based on the quadratic polynomial regression model,the design space of spray drying process of Banlangen(Isatidis Radix)formula granules was established,and further validated by experiments.Results Plackett-burman test results show that liquid relative density and inlet velocity are the key parameters for the study.The variance analysis results of CCD test showed that the constructed model in a good prediction ability,since the P-values of model was less than 0.01 and P-values of items lack of fit was more than 0.05.The optimized design space of CPPs was the liquid relative density 1.05-1.08,and pump speed 30%-40%.Conclusion Based on the QbD concept,the design space for the spray drying process of Banlangen(Isatidis Radix)formula granules can improve the stability of its process and help ensure the consistency of product quality.
7.Application value of MEX3A,CDX2,MUC2 and MUC5AC in judging cancerous gastric mucosal intestinal metaplasia
Mengyuan ZHANG ; Jiarui LIU ; Zhong ZHANG ; Lanlan JIAO ; Min ZHANG ; Wei BO ; Jiayu GOU ; Chengcheng WU ; Xudong YANG ; Xuguang WANG
China Modern Doctor 2024;62(10):1-5
Objective To investigate the correlation between MEX3A and differentiation characteristics of gastric cancer and intestinal metaplasia,and its combination with caudal-related homeobox transcription factor 2(CDX2)and mucin 2(MUC2)and mucin 5AC(MUC5AC)to determine the role of carcinogenic intestinal metaplasia.Methods From January 2010 to December 2014,a total of 410 cases of gastric cancer and paracarcinoma paraffin-embedded tissue samples were selected from the Central Hospital Affiliated to Shenyang Medical College and the Second Hospital Affiliated to Shenyang Medical College.According to pathological diagnosis,they were divided into control group(mild superficial gastritis,79 cases),intestinal metaplasia group(149 cases)and gastric cancer group(182 cases).The expressions of MEX3A,CDX2,MUC2 and MUC5AC were detected by immunohistochemistry.Results MEX3A was highly expressed in gastric cancer group and intestinal metaplasia group,especially diffuse gastric cancer,poorly differentiated gastric cancer and type Ⅲ intestinal metaplasia(P<0.05).CDX2 and MUC2 were highly expressed in gastric cancer group and intestinal metaplasia group,especially intestinal type gastric cancer,highly and moderately differentiated gastric cancer,type Ⅰ and type Ⅱ intestinal metaplasia(P<0.05).The expression of MUC5AC was high in control group and low in gastric cancer group and intestinal metaplasia group,especially in intestinal type gastric cancer,type Ⅰ and type Ⅲ intestinal metaplasia(P<0.05).Gastric cancer and intestinal metaplasia differentiation were negatively correlated with MEX3A and MUC5AC expression,but positively correlated with CDX2 and MUC2 expression(P<0.05).MEX3A was negatively correlated with the expression of CDX2 and MUC2,and positively correlated with the expression of MUC5AC in gastric cancer(P<0.05).MEX3A was negatively correlated with the expression of CDX2 and MUC2 in intestinal metaplasia(P<0.05),while CDX2 was positively correlated with the expression of MUC2(P<0.05).Conclusion MEX3A is negatively correlated with gastric cancer and intestinal metaplasia differentiation.Gastric cancer is characterized by high MEX3A expression and low CDX2 and MUC2 expression.
8.An accurate diagnostic approach for urothelial carcinomas based on novel dual methylated DNA markers in small-volume urine.
Yucai WU ; Di CAI ; Jian FAN ; Chang MENG ; Shiming HE ; Zhihua LI ; Lianghao ZHANG ; Kunlin YANG ; Aixiang WANG ; Xinfei LI ; Yicong DU ; Shengwei XIONG ; Mancheng XIA ; Tingting LI ; Lanlan DONG ; Yanqing GONG ; Liqun ZHOU ; Xuesong LI
Chinese Medical Journal 2024;137(2):232-234
9.New progress in the first-line treatment of advanced hepatocellular carcinoma
Chuanhui ZHANG ; Dongyue YAO ; Siqi LIU ; Lanlan YANG ; Zhenjing JIN
Chinese Journal of Hepatology 2024;32(2):173-179
Hepatocellular carcinoma is a kind of cancer with a strong invasion, a high incidence rate and mortality, and a poor prognosis. At the time of diagnosis, most patients are already in the advanced stages of a tumor and have lost the chance for radical surgical treatment. Advanced hepatocellular carcinoma treatment has a gradual transition from systemic chemotherapy to targeted therapy, immunotherapy, and combination therapy, especially immune checkpoint inhibitor-based immunotherapy combination therapy, such as combination with bevacizumab monoclonal antibodies and other drugs, or combination with TACE, HAIC, radiotherapy, ablation, and other treatment methods. Combination therapy has significant synergistic effects and thus has already become a future treatment trend for hepatocellular carcinoma. An immunotherapy-based combination therapy plan will run through the whole process of systemic therapy, which is expected to bring better survival benefits to patients with hepatocellular carcinoma. This article reviews the latest research progress in aspects of the first-line treatment of advanced hepatocellular carcinoma.
10.Study on the application of YOLO algorithm based on improved YOLO network in the detection of ultrasound image for breast tumor
Tao YANG ; Lanlan YANG ; Miyang YANG ; Qi HUANG ; Shuangyu YE ; Liyuan FU ; Hongjia ZHAO
China Medical Equipment 2024;21(9):23-27
Objective:To realize the optimization and upgradation of the detection method of you only look once(YOLO)algorithm model based on the improved YOLO network on the ultrasound image for breast tumor.Methods:A total of 659 images of breast tumor of the Kaggle database were selected as the initially dataset,and the image annotation tool Labelimg was used to conduct pre-labeling for the detection targets in the images.According to a ratio as 7:3,629 images of the 659 images were divided into the train set and validation set,and the other 30 images were used as the test set.The convolutional block attention module(CBAM)and bidirectional feature pyramid network(BiFPN)were introduced into the original YOLO algorithm to underwent structural improvement,which was named as YOLOv5-BiFPN-CBAM.Both the train set and validation set were placed in original YOLO algorithm model and YOLOv5-BiFPN-CBAM model to conduct train,which included 200 rounds of iterative training.The obtained optimal weight files were used in the final test of test set.Results:After 200 rounds of iterative train for two kinds of models,the test results of validation set indicated that the mean values of average precision of two kinds of models were respectively 72.1%and 80.5%for all ultrasound images of breast tumor.The result,that the optimal weight file of improved model was tested by test set,indicated the test ability of improved model was significantly enhanced than that of original model for small target in image.Conclusion:Compared with the original YOLO algorithm model,the improved YOLO algorithm model has higher recognition capability for image,which also enhances precision and sensitivity in identifying small targets of ultrasound images of breast tumor.This model is helpful to improve the diagnostic efficiency in clinical practice for breast tumor.

Result Analysis
Print
Save
E-mail