1.Relationship between social support and depressive symptoms in patients with major depressive disorder: the pathway of empathy
Lan ZHU ; Jie LI ; Meijuan LI ; Ying GAO
Sichuan Mental Health 2025;38(2):166-171
BackgroundSocial support can help alleviate depressive symptoms in patients with major depressive disorder (MDD) and improve individual levels of empathy. The higher the level of empathy, the lower the probability of depressive symptoms. At present, the relationship between social support, empathy and depressive symptoms in MDD patients is unclear. ObjectiveTo explore the pathway of empathy in the relationship between social support and depressive symptoms in patients with MDD, so as to provide references for clinical treatment of MDD patients. MethodsA total of 126 patients who visited the outpatient clinic of Tianjin Anding hospital from July 2020 to September 2022 and met the diagnostic criteria for Major Depressive Disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) were selected as the study subjects. Hamilton Depression Scale-17 item (HAMD-17), Interpersonal Reactivity Index (IRI) and Social Support Rating Scale (SSRS) were used for assessment. Pearson correlation analysis was conducted to examine the correlations among the scale scores. Path analysis was performed using Model 4 of the Process 3.4.1. Bootstrap method was used to test the path effects. ResultsAmong MDD patients, HAMD-17 total score was positively correlated with IRI total score and its subscales of fantasy and personal distress (r=0.225, 0.213, 0.220, P<0.05). HAMD-17 total score was negatively correlated with SSRS total score and its subscales of subjective support and support utilization (r=-0.211, -0.181, -0.208, P<0.05). The score of support utilization subscale of SSRS was positively correlated with IRI total score and its subscale of perspective taking and empathic concern (r=0.257, 0.261, 0.331, P<0.01). Empathy served as a pathway between support utilization and depressive symptoms, with an indirect effect of 0.217 (95% CI: 0.060~0.426), and the effect size was 36.90%. ConclusionEmpathy may serve as a pathway between support utilization and depressive symptoms in patients with MDD.
2.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
3.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
4.Not Available.
Chunhao ZHU ; Xiaobing LAN ; Zhiqiang WEI ; Jianqiang YU ; Jian ZHANG
Acta Pharmaceutica Sinica B 2024;14(1):67-86
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
5.A new suberin from roots of Ephedra sinica Stapf
Bo-wen ZHANG ; Meng LI ; Xiao-lan WANG ; Ying YANG ; Shi-qi ZHOU ; Si-qi TAO ; Meng YANG ; Deng-hui ZHU ; Ya-tong XU ; Wei-sheng FENG ; Xiao-ke ZHENG
Acta Pharmaceutica Sinica 2024;59(3):661-666
Six compounds were isolated from the roots of
6.Preliminary study on expression of LINC02695 in neovascularization in diabetic retinopathy
Yuan YUAN ; Anmin ZHU ; Lan ZENG ; Xiaofeng LONG ; Meng YE ; Kai TANG ; Wei TAN
Chongqing Medicine 2024;53(4):487-492,497
Objective To investigate the expression of long non-coding RNA(lncRNA)LINC02695 in human retinal microvascular endothelial cells(HRMECs)in high glucose(HG)environment and its effect on the proliferation,migration and neovascularization of HRMECs.Methods HRMECs was divided into four groups:the normal glucose(NG)group(5.5 mmol/L),the HG group(30.0 mmol/L),the HG+LINC02695 silenced group(HG+si-LINC02695),and the HG+silenced control group(HG+si-NC).Real-time quantita-tive fluorescent PCR(qPCR)was used to detect the expression of LINC02695 and vascular endothelial growth factor(VEGF)mRNA in HRMECs of each group.The cell proliferation of each group was measured by Cell Counting Kit-8(CCK-8)method.The migration ability of cells in each group was detected by Transwell as-say.The tube forming ability of cells in each group was detected by tube forming experiment.Results The qPCR results showed that compared with the NG group,LINC02695 and VEGF were highly expressed in the HG group(P<0.05).Compared with the HG group,VEGF mRNA expression level in the HG+si-LINC02695 group was significantly decreased(P<0.05).The results of CCK-8 experiment showed that the proliferation ability of the HG group was significantly enhanced compared with the NG group(P<0.05).Compared with the HG group,the cell proliferation ability of the HG+si-LINC02695 group was significantly decreased(P<0.05).The results of Transwell experiment showed that the cell migration ability of the HG group was significantly increased compared with the NG group(P<0.05).Compared with the HG group,the cell migration ability of the HG+si-LINC02695 group was significantly decreased(P<0.05).The results of tube formation experiment showed that compared with the NG group,the tube formation ability of the HG group was significantly increased(P<0.05).Compared with the HG group,canalization ability of cells in the HG+si-LINC02695 group was significantly decreased(P<0.05).Conclusion LINC02695 may be involved in promoting the proliferation,migration and angiogenesis of HRMECs induced by HG.
7.Rapid Determination of 32 Kinds of Veterinary Drug Residues in Eggs Using Modified QuEChERS Based on Reduced Graphene Oxide-coated Melamine Sponge by Ultra-High Liquid Chromatography-Tandem Mass Spectrometry
Xu XU ; Jia LYU ; Lan-Rui YANG ; Zhu-Chen HOU ; Bao-Cheng JI ; Yan-Hong BAI
Chinese Journal of Analytical Chemistry 2024;52(1):121-129,中插38-中插43
A rapid analytical method for simultaneous determination of 32 kinds of multi-residue veterinary drugs in eggs was developed using a modified QuEChERS technique based on a reduced graphene oxide-coated melamine sponge(r-GO@MeS)by ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).The influences of graphene oxide(GO)concentrations,sponge dosages,and purification modes on drug recoveries were investigated during the purification process.The optimal purification conditions involved using a GO concentration of 0.5 mg/mL,a sponge dosage of 6.0 cm3/mL,and a dynamic purification mode of 5 extrusion cycles.Separation was achieved using an Agilent Eclipse Plus C18 RRHD column(100 mm×2.1 mm,1.8 μm),and quantitative analysis was performed by the external standard method using an electrospray ionization source(ESI)in multiple reaction monitoring(MRM)mode.The results showed that all 32 kinds of veterinary drugs exhibited good linear correlation with coefficients greater than 0.999,and matrix effects(MEs)ranging from?7.8%to 18.9%.The limits of detection(LODs)and quantification(LOQs)ranged from 0.2 to 10.2 μg/kg and from 0.6 to 28.0 μg/kg,respectively.The recoveries for the three spiked levels were in the range of 66.5%?117.5%,with intra-day and inter-day precision(Relative standard deviation)below 13.3%and 16.3%,respectively.The synthetic r-GO@MeS exhibited efficient matrix purification without the need of high-speed centrifugation or strong magnetic field assistance.This significantly shorted the sample pretreatment time and improved the convenience of the matrix purification process.Combined with UPLC-MS/MS,the method was suitable for the rapid determination of multi-residue veterinary drugs in eggs.
8.Risk factors for poor prognosis in patients with extracorporeal cardiopulmonary resuscitation
Junjun WANG ; Shuai TONG ; Ruyi LEI ; Xinya JIA ; Xiaodong SONG ; Tangjuan ZHANG ; Hong WANG ; Yan ZHOU ; Renjie LI ; Xingqiang ZHU ; Chujun YANG ; Chao LAN
Chinese Journal of Emergency Medicine 2024;33(2):215-221
Objective:To analyze the clinical characteristics of patients undergoing extracorporeal cardiopulmonary resuscitation (ECPR), and to explore the risk factors leading to poor prognosis.Methods:The clinical data of 95 patients with ECPR admitted to the First Affiliated Hospital of Zhengzhou University from January 2020 to May 2023 were retrospectively analyzed. According to the survival status at the time of discharge, the patients were divided into the survival group and death group. The difference of clinical data between the two groups was compared to explore the risk factors related to death and poor prognosis. Risk factors associated with death were identified by Binary Logistic regression analysis. Results:A total of 95 patients with ECPR were included in this study, 62 (65.3%) died and 33 (34.7%) survived at discharge. Patients in the death group had longer low blood flow time [40 (30, 52.5) min vs. 30 (24.5, 40) min ] and total cardiac arrest time[40 (30, 52.5) min vs. 30(24.5, 40) min], shorter total hospital stay [3 (2, 7.25) d vs. 19 (13.5, 31) d] and extracorporeal membrane oxygenation (ECMO) assisted time [26.5 (17, 50) h vs. 62 (44, 80.5) h], and more IHCA patients (56.5% vs. 33.3%) and less had spontaneous rhythm recovery before ECMO (37.1% vs. 84.8%). Initial lactate value [(14.008 ± 5.188) mmol/L vs.(11.23 ± 4.718) mmol/L], APACHEⅡ score [(30.10 ± 7.45) vs. (25.88 ± 7.68)] and SOFA score [12 (10.75, 16) vs. 10 (9.5, 13)] were higher ( P< 0.05). Conclusions:No spontaneous rhythm recovery before ECMO, high initial lactic acid and high SOFA score are independent risk factors for poor prognosis in ECPR patients.
9.The protective effect and mechanism of sivelestat on the heart after resuscitation through regulating β-catenin signaling pathway
Jun ZHANG ; Weidong ZHU ; Weiting CHEN ; Pin LAN ; Jiefeng XU
Chinese Journal of Emergency Medicine 2024;33(3):339-345
Objective:To establish the pig model of cardiac arrest and resuscitation, and then investigate the protective role of sivelestat (SV) on the heart after resuscitation and its relation with β-catenin signaling pathway.Methods:Twenty-five healthy male white pigs were purchased. The animals were randomly divided into the Sham group ( n=6), cardiopulmonary resuscitation group (CPR, n=10), and CPR+SV group ( n=9). The experimental animal model was established by 9 min of cardiac arrest induced by the method of ventricular fibrillation and then 6 min of CPR in the CPR and CPR+SV groups. At 5 min after successful resuscitation, a dose of 10 mg/kg of SV was infused in a duration of 1h via the femoral vein with a micro-infusion pump in the CPR+SV group. Myocardial function evaluated by the values of stroke volume (SV) and global ejection fraction (GEF) was measured by PiCCO at baseline, and at 0.5, 1, 2, 4 h after resuscitation. The serum concentrations of cardiac injury biomarkers including cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were measured by ELISA using blood samples drawn from the femoral vein at baseline, and at 1, 2, 4, and 24 h after resuscitation. The animals were euthanized at 24 h after resuscitation, and then cardiac tissue samples were harvested to measure the protein expression levels of β-catenin, Cyclin D1, c-Myc, cleaved caspase-9, and cleaved caspase-3 by Western blot and the degree of cell apoptosis by TUNEL. Results:Prior to cardiac arrest, myocardial function and cardiac injury biomarkers were maintained at the same levels, and no differences were observed among the three groups (all P> 0.05). After resuscitation, myocardial dysfunction and cardiac injury were observed in the CPR and CPR+SV groups, in which the values of SV and GEF were significantly decreased and meanwhile the serum concentrations of cTnI and CKMB were significantly increased when compared with the Sham group (all P< 0.05). However, myocardial dysfunction and cardiac injury were significantly milder in the CPR+SV group, in which the value of SV at 4h post-resuscitation and the values of GEF starting 1h post-resuscitation were significantly increased, and the serum concentrations of cTnI and CKMB were significantly decreased at 4 and 24 h post-resuscitation when compared to the CPR group (all P< 0.05). Tissue measurements indicated that the change of β-catenin signaling pathway and the occurrence of cell apoptosis were observed in the heart at 24 h post-resuscitation in the CPR and CPR+SV groups, which were indicated by significant increases in the protein expression levels of β-catenin, Cyclin D1, c-Myc, cleaved caspase-9, and cleaved caspase-3, and marked elevation in the index of cell apoptosis when compared with the Sham groups (all P< 0.05). However, the expression levels of proteins mentioned above were significantly decreased in the heart at 24 h post-resuscitation and the index of cell apoptosis was significantly reduced in the CPR+SV group when compared to the CPR group (all P< 0.05). Conclusion:SV has the protective role in alleviating post-resuscitation myocardial dysfunction and cardiac injury, in which the protective mechanism is possibly related to the alleviation of cell apoptosis through the inhibition of β-catenin signaling pathway activation.
10.Research progress in SARS-CoV-2 nucleic acid detection based on microfluidic platforms
Fan YANG ; Lan WANG ; Hong QIU ; Cheng KONG ; Wei-Wei ZHANG ; Chang GU ; Yue-Rong ZHU
Chinese Medical Equipment Journal 2024;45(1):101-107
The detection principle of microfluidic microfluidic technology was introduced.The current research status of microfluidic platform-based SARS-CoV-2 nucleic acid detection technologies were reviewed such as reverse transcription quantitative real-time polymerase chain reaction(RT-qPCR),digital PCR,isothermal amplification and clustered regularly interspaced palindromic repeats/CRISPR-associated protein.The deficiencies of microfluidic platform-based SARS-CoV-2 nucleic acid detection were analyzed.It's pointed out microfluidic platform-based SARS-CoV-2 nucleic acid detection had to be optimized and validated clinically in specialty,sensitivity,detection limit,reproducibility,informatization,quality control and reagent cost.[Chinese Medical Equipment Journal,2024,45(1):101-107]

Result Analysis
Print
Save
E-mail