1.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
2.Discussion on the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions
Zilin REN ; Changxiang LI ; Yuxiao ZHENG ; Xin LAN ; Ying LIU ; Yanhui HE ; Fafeng CHENG ; Qingguo WANG ; Xueqian WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):48-54
The purpose of this paper is to explore the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions and to provide a reference basis for the clinical use of rhubarb root and rhizome. By collating the relevant classical prescriptions of rhubarb root and rhizome in Shanghan Lun and Jingui Yaolüe, the relationship between its decoction and dosing methods and the syndrome was analyzed. The decoction of rhubarb root and rhizome in classical prescriptions can be divided into three categories: simultaneous decoction, decoction later, and other methods (impregnation in Mafei decoction, decoction with water from the well spring first taken in the morning, and pills). If it enters the blood level or wants to slow down, rhubarb root and rhizome should be decocted at the same time with other drugs. If it enters the qi level and wants to speed up, rhubarb root and rhizome should be decocted later. If it wants to upwardly move, rhubarb root and rhizome should be immersed in Mafei decoction. If it wants to suppress liver yang, rhubarb root and rhizome should be decocted with water from the well spring first taken in the morning. If the disease is prolonged, rhubarb root and rhizome should be taken in pill form. The dosing methods of rhubarb root and rhizome can be divided into five categories: draught, twice, three times, before meals, and unspecified. For acute and serious illnesses with excess of pathogenic qi and adequate vital qi, we choose draught. For gastrointestinal diseases, we choose to take the medicine twice. For achieving a moderate and long-lasting effect, we choose to take the medicine three times. If the disease is located in the lower part of the heart and abdomen, we choose to take it before meals. The use of rhubarb root and rhizome in clinical practice requires the selection of the appropriate decoction and dosing methods according to the location of the disease, the severity of the disease, the patient′s constitution, and the condition after taking the medicine.
3.The mechanism of Prim-O-glucosylcimifugin in improving cholesterol metabolism in osteoarthritis chondrocytes via lncRNA NEAT1/miR-128-3p
Yanming LIN ; Haishui TU ; Shujie LAN ; Chao LI ; Shiyu LU ; Yue CHEN ; Changlong FU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):55-67
Objective:
To investigate the mechanism of action of Prim-O-glucosylcimifugin (POG) to improve cholesterol metabolism in osteoarthritic (OA) chondrocytes based on the long noncoding RNA nuclear-enriched transcript 1 (lncRNA NEAT1)/microRNA-128-3p (miR-128-3p) pathway.
Methods:
For in vivo experiments, 60 mice were divided into the normal, sham operation, model, and POG groups using the random number table method, with 15 mice per group. The osteoarthritis mouse model was constructed using the modified Hulth method in the model and POG groups. Mice in the POG group were administered 30 mg/(kg·d)POG by gavage. The other groups were administered an equal amount of normal saline for 8 weeks. The cartilage tissue structure of mice in each group was observed using hematoxylin and eosin staining. Real-time PCR was used to detect changes in the lncRNA NEAT1 and miR-128-3p mRNA expression levels in the cartilage tissues of mice. Western blotting was used to detect the protein expressions of ATP-binding cassette transporter A1 (ABCA1), liver X receptor β (LXRβ), matrix metalloprotein-3 (MMP-3), and B-lymphoblastoma-2-associated X protein (Bax) in articular cartilage of mice. An enzyme-linked immunosorbent assay was used to measure the tumor necrosis factor-α (TNF-α) content in the synovial fluid of mice. A biochemical microplate assay was used to measure the total cholesterol level in the synovial fluid of mice. The in vitro experiments were divided into the negative control, interleukin-1β(IL-1β), IL-1β+ POG, IL-1β+ oe-lncRNA NEAT1, IL-1β+ oe-lncRNA NEAT1 + POG, IL-1β + miR-128-3p inhibition, and IL-1β+ miR-128-3p inhibition+ POG groups. An OA model was established by inducing chondrocytes with IL-1β for 24 h, and 90 mg/L of POG and miR-128-3p inhibitor(50 nmol/L) were administered for 48 h as an intervention. lncRNA NEAT1 expression in chondrocytes was detected using fluorescence in situ hybridization. A dual luciferase assay was used to detect the targeting relationship between lncRNA NEAT1 and miR-128-3p. Lentiviral plasmids overexpressing lncRNA NEAT1 were used to transfect mouse chondrocytes. Real-time PCR was used to detect the effect of lncRNA NEAT1 overexpression on the mRNA level of miR-128-3p in chondrocytes. Western blotting was used to detect ABCA1, LXRβ, MMP-3, and Bax protein expression in chondrocytes after lncRNA NEAT1 overexpression and miR-128-3p inhibition.
Results:
POG significantly reduced OA cartilage tissue damage. Compared with the model group, the lncRNA NEAT1 mRNA level decreased, whereas the miR-128-3p mRNA level increased in the cartilage tissue of the POG group (P<0.05). Compared with the model group, ABCA1 and LXRβ protein expression increased in the POG group, whereas MMP-3 and Bax protein expression decreased (P<0.05). The TNF-α levels decreased in the POG group compared to the model group (P<0.05). Compared with the model group, the total cholesterol level in the synovial fluid of the joint of mice in the POG group decreased (P<0.05). The mean fluorescence intensity of lncRNA NEAT1 in the IL-1β+ POG group decreased compared with the IL-1β group (P<0.05). The relative luciferase activity in the miR-128-3p mimics group bound to the lncRNA NEAT1-WT plasmid decreased compared with the miR-128-3p negative control group (P<0.05). The lncRNA NEAT1 mRNA levels decreased, whereas the miR-128-3p mRNA levels increased in the IL-1β+ oe-lncRNA NEAT1 + POG group compared with the IL-1β+ oe-lncRNA NEAT1 group (P<0.05). Compared with the IL-1β+ POG group, ABCA1 and LXRβ protein expression decreased, whereas MMP-3 and Bax protein expression increased (P<0.05).
Conclusion
POG mediates lncRNA NEAT1/miR-128-3p to improve cholesterol metabolism in OA chondrocytes.
4.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
5.Clinical Characteristics and Influencing Factors of Rheumatoid Arthritis in Patients with Cold Dampness Obstruction Syndrome
Yanyu CHEN ; Yanqi LI ; Longxiao LIU ; Liubo ZHANG ; Tianyi LAN ; Nan ZHANG ; Cheng XIAO ; Yuan XU ; Qingwen TAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):140-146
ObjectiveTo study the clinical characteristics and influencing factors of rheumatoid arthritis (RA) in the patients with cold dampness obstruction syndrome. MethodsThe RA patients treated in the Department of Traditional Chinese Medicine and Rheumatology of the China-Japan Friendship Hospital from August 2022 to June 2024 were selected. The demographic information, clinical data, laboratory test results, and traditional Chinese medicine (TCM) symptom information were collected for syndrome differentiation, on the basis of which the characteristics and influencing factors of cold dampness obstruction syndrome were analyzed. ResultsA total of 258 RA patients were selected in this study, including 88 (34.1%) patients with cold dampness obstruction syndrome, 53 (20.5%) patients with dampness and heat obstruction syndrome, 31 (12.0%) patients with wind dampness obstruction syndrome, 29 (11.2%) patients with liver-kidney deficiency syndrome, 19 (7.4%) patients with Qi-blood deficiency syndrome, 14 (5.4%) patients with phlegm-stasis obstruction syndrome, 15 (5.8%) patients with stasis obstructing collateral syndrome and 9 (3.5%) patients with Qi-Yin deficiency syndrome. The patients were assigned into two groups of cold dampness obstruction syndrome and other syndromes. The group of cold dampness obstruction syndrome had lower joint fever, 28-tender joint count (TJC28), and 28-joint disease activity score (DAS28)-C-reactive protein (CRP) and higher central sensitization, cold feeling of joints, fear of wind and cold, cold limbs, and abdominal distention than the group of other syndromes (P<0.05). The binary logistic regression analysis showed that central sensitization (OR 5.749, 95%CI 2.116-15.616, P<0.001) and DAS28-CRP (OR 0.600, 95% CI 0.418-0.862, P=0.006) were the independent factors influencing cold dampness obstruction syndrome in RA. ConclusionCold dampness obstruction syndrome is a common syndrome in RA patients. It is associated with central sensitization, cold feeling of joints, abdominal distension and may be a clinical syndrome associated with central sensitization.
6.Research Progress of Traditional Chinese Medicine Intervention in Malignant Tumor Metastasis Based on Metabolic Reprogramming
Hesheng LI ; Chunchan LI ; Huahui GUO ; Jiasheng HUANG ; Congying LAN ; Penghui CHEN ; Renfa HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):272-280
Malignant tumor metastasis is the key factor leading to poor prognosis of patients, and it is a difficult problem to be overcome in the field of tumor therapy. Metabolic reprogramming, as a key link in the regulation of tumor metastasis activity, affects the growth, invasion, and metastasis of tumor cells by changing the metabolic pathways of intracellular substances (such as glucose, amino acids, lipids, and nucleotides). In particular, metabolic reprogramming plays a key role in the multistage linked steps related to tumor metastasis and can play a crucial role in several key stages of tumor tissue dissociation in situ, hematogenous metastasis, and remote colonization. Malignant tumor cells can selectively adjust their own metabolic state to adapt to the growth conditions of different metastatic microenvironments and colonization sites and then choose the most favorable growth and metabolism strategy. According to the holistic concept of traditional Chinese medicine (TCM), the metastasis of malignant tumors is generally closely related to the metabolic state of the whole body. One of the advantages of TCM in the treatment of malignant tumors is systemic regulation. With its multi-pathway, multi-target, and multi-component therapeutic characteristics, TCM can effectively control the metastasis of malignant tumors by regulating the degradation of tumor epithelial mesenchymal transformation (EMT) and extracellular matrix (ECM), anchoring the independent growth of tumor cells and the tumor microenvironment. In this paper, the potential regulatory effects of metabolic reprogramming on the metastasis of malignant tumors were discussed, and the latest research progress of the regulation of metabolic reprogramming by TCM on tumor metastasis was reviewed. At the same time, the key targets of TCM and its bioactive components in the process of tumor metastasis intervention were reviewed. This study aims to provide a more valuable basis and clearer idea for the treatment of malignant tumor metastasis by regulating metabolic reprogramming with TCM.
7.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
8.Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts
Liping HUANG ; Hui LI ; Xinge WANG ; Rui WANG ; Bei CHANG ; Shiting LI ; Xiaorong LAN ; Guangwen LI
Chinese Journal of Tissue Engineering Research 2025;29(10):1990-1996
BACKGROUND:The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue,thereby achieving perfect bone integration function.However,further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis. OBJECTIVE:To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. METHODS:(1)At a constant voltage of 5 V or 20 V,nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques,and were recorded as group R5 and group R20,respectively.The surface morphology,roughness,and hydrophilicity of pure titanium sheet(without acid etching or anodizing treatment)were measured in group R5 and group R20.(2)MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets,R5 group and R20 group respectively.After 24 hours of osteogenic induction culture,the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining.Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added,and alkaline phosphatase staining was performed after 7 days of culture.Alizarin red staining was performed after 14 days of culture. RESULTS AND CONCLUSION:(1)The surface of pure titanium sheets was smooth under scanning electron microscope.Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20,respectively.The results of scanning electron microscope were further verified by atomic force microscopy.The surface roughness of titanium sheet of group R5 was higher than that of pure titanium(P<0.05),and the water contact angle was lower than that of pure titanium(P<0.05).The surface roughness of titanium sheet in group R20 was higher than that in group R5(P<0.05),and the water contact angle was lower than that in group R5(P<0.05).(2)RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group(P<0.05),and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5(P<0.05).Under the osteogenic induction,compared with the condition without Yada1,there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition,while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased(P<0.05).With or without Yada1,the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group(P<0.05),and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5(P<0.05).(3)The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.
9.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
10.Effects of exercise intervention on intestinal flora in college students:a systematic review
Zhaozhi LIU ; Li HUANG ; Haodong TIAN ; Lan LI ; Xiao CHEN ; Yunfei TAO ; Li PENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2394-2401
BACKGROUND:The regulation of intestinal flora by exercise is closely related to human health,but intestinal flora involves many factors.Existing studies have lacked consistent evidence on the effect of exercise on the intestinal flora of college students. OBJECTIVE:To explore the effects of exercise on intestinal flora diversity and species composition of college students. METHODS:Through systematic search of PubMed,Web of Science,Embase,Medline,Cochrane Library,CNKI,WanFang Database and VIP database,eight empirical studies were selected and included,and semi-quantitative analysis was performed on them. RESULTS AND CONCLUSION:In terms of the species diversity of the intestinal flora,both high-intensity interval training and Tai Chi exercise significantly enhance the species diversity of intestinal flora in college students,while aerobic exercise does not have a significant effect on the enhancement of intestinal flora diversity in college students.In terms of the species composition of the intestinal flora,all three exercise modalities significantly alter the compositional structure of the intestinal flora in college students,which can increase the abundance of beneficial bacteria such as Ruminalococcus,Faecalis prevotelli,Blautia,and decrease the abundance of harmful bacteria such as Escherichia spp.Compared with high-intensity interval training,aerobic and Tai Chi exercise causes more elevated abundance of beneficial bacteria.In addition to changes in intestinal flora characteristics,exercise improves body composition,cardiorespiratory function,and executive function in college students,and these health benefits are closely linked to exercise-induced changes in intestinal flora that can produce health benefits for the body through metabolic regulation,barrier function,and neuromodulation.Although studies have confirmed the association between exercise and intestinal flora,the mechanism by which exercise affects intestinal flora has not yet been clarified,and at the same time,localizing the flora related to the host health is the key to targeting intestinal flora as a therapeutic target in the future,all of which are worthy of further attention and investigation.


Result Analysis
Print
Save
E-mail