1.Inhibitory effect of andrographolide on angiogenesis induced by the supernatant from cultured tumor cells.
Xiaolan GUO ; Maozhou ZHAO ; Yuyin LIN ; Wensheng CHEN ; Shiwen WANG ; Jianwei DAI
Journal of Central South University(Medical Sciences) 2018;43(8):821-825
To determine the effect of andrographolide (Andro) on angiogenesis of human umbilical vein endothelial cells (HUVECs).
Methods: HUVECs were treated with different concentrations of Andro and the cell viability was detected with Cell Counting Kit-8 (CCK-8). HUVECs were treated with half lethal dose (IC50) of Andro. Matrigel was used to make capillary formation of HUVECs and the effect of Andro on capillary formation was evaluated by calculating the percentage of capillary formation. Moreover, the effects of Andro and the supernatant from cultured A549 tumor cells on capillary formation were evaluated by calculating the percentage of capillary formation. The effect of Andro on the expression of matrix metalloproteinase-9 (MMP-9) was determined with Western blot.
Results: The cell viability of HUVECs decreased with the increase of Andro concentrations. IC50 was 20 μmol/L. The capillary formation of HUVECs was inhibited when treated with 20 μmol/L Andro for 24 hours. Moreover, Andro was able to antagonize the promotion of the capillary formation induced by the supernatant from cultured tumor cells. Andro could suppress the expression of MMP-9 and antagonize the capillary formation.
Conclusion: Andro inhibits the capillary formation of HUVECs and can antagonize the promotion of angiogenesis induced by the supernatant from cultured tumor cells.
Capillaries
;
drug effects
;
Cell Survival
;
Collagen
;
Culture Media
;
Diterpenes
;
pharmacology
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Laminin
;
Matrix Metalloproteinase 9
;
metabolism
;
Neovascularization, Pathologic
;
enzymology
;
etiology
;
prevention & control
;
Proteoglycans
;
Tumor Cells, Cultured
2.Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo.
Bin-Rui YANG ; Si-Jia HONG ; Simon Ming-Yuen LEE ; Wei-Hong CONG ; Jian-Bo WAN ; Zhe-Rui ZHANG ; Qing-Wen ZHANG ; Yi ZHANG ; Yi-Tao WANG ; Zhi-Xiu LIN
Chinese journal of integrative medicine 2016;22(6):420-429
OBJECTIVEThis study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish.
METHODSThe in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels.
RESULTSR1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs.
CONCLUSIONR1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Animals ; Blood Vessels ; pathology ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Collagen ; pharmacology ; Disease Models, Animal ; Drug Combinations ; Ginsenosides ; chemistry ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; enzymology ; physiology ; Humans ; Laminin ; pharmacology ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinases ; metabolism ; Protein Kinase Inhibitors ; pharmacology ; Proteoglycans ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; Zebrafish
3.Effect of antibacterial peptide hCAP18/LL-37 on ovarian cancer microenvironment and the regulatory mechanism of its expression.
Qian LU ; Wenqiang QUAN ; Junlu WU ; Xian ZHANG ; Wei MA ; Li PANG ; Dong LI ; Email: 186LD@163.COM.
Chinese Journal of Oncology 2015;37(10):725-730
OBJECTIVETo investigate the effect of antibacterial peptide hCAP18/LL-37 on ovarian cancer microenvironment and the regulatory mechanism of its expression.
METHODSWe assessed the effect of macrophage-promoted ovarian cancer cells invasion using BioCoat Matrigel invasion chamber. The expressions of hCAP18/LL-37 and versican V1 were determined by real-time PCR and Western blot analysis. SKOV3 cells were transfected with shRNA plasmid to abrogate the expression of versican V1, and then the expression of hCAP18/LL-37 in macrophages and the invasiveness of SKOV3 cells were assayed.
RESULTSThe Matrigel invasion assay showed that after co-culture with macrophages for 4 days, the number of penetrated SKOV3 cells was 112.8±17.1/per high power field, significantly higher than that in the SKOV3 cells cultured alone (8.2±1.9/per high power field) (P<0.05). Addition of hCAP/LL-37 neutralizing antibody into the co-cultured macrophage-SKOV3 cells markedly inhibited the macrophage-promoted SKOV3 cells invasion. The penetrated SKOV3 cells was 22.2±5.6/per high power field, significantly lower than the 100.6±25.2/per high power field in the control macrophage- SKOV3 co-cultured cells (P<0.05). The expressions of hCAP18/LL-37 mRNA and protein in macrophages were remarkably enhanced upon co-culture with SKOV3 cells, but not changed in SKOV3 cells cultured alone. The expression and secretion of versican V1 in the ovarian cancer cells were also significantly increased after co-cultured with macrophages. Knockdown of versican V1 in SKOV3 cells by small interfering RNA significantly reduced the expression of hCAP18/LL-37 mRNA and protein in the macrophages, as well as decreased the invasiveness of SKOV3 cells (P<0.05).
CONCLUSIONSIn the cancer microenvironment, the macrophage-secreted hCAP18/LL-37 promote the invasiveness of ovarian cancer cells, and the hCAP18/LL-37 expression is regulated by versican V1 protein released by ovarian cancer cells.
Antimicrobial Cationic Peptides ; metabolism ; pharmacology ; Cell Line, Tumor ; Coculture Techniques ; Collagen ; Drug Combinations ; Female ; Humans ; Laminin ; Macrophages ; metabolism ; Neoplasm Invasiveness ; Neoplasm Proteins ; metabolism ; Ovarian Neoplasms ; metabolism ; pathology ; physiopathology ; Plasmids ; Proteoglycans ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Transfection ; Tumor Microenvironment ; drug effects ; Versicans ; metabolism
4.Inhibitory effect of von Willebrand factor-cleaving protease on angiogenesis.
Chunhai JIN ; Shuang WANG ; Yanhong ZHAO ; Shengyu JIN ; Hua LI
Chinese Journal of Hematology 2015;36(7):602-606
OBJECTIVETo investigate the inhibitory effect of von Willebrand factor-cleaving protease, a disintegrin-like and metalloprotease with thrombospondin-1 repeats (ADAMTS13)on angiogenesis induced by vascular endothelial growth factor (VEGF)in vitro and in vivo.
METHODSCell proliferation assay, differentiation (tube formation)assay and wound migration assay were performed by using human umbilical vein endothelial cells (HUVECs)to explore the effect of ADAMTS13 on angiogenesis in vitro. Cells were treated with different concentrations of ADAMTS13 (1, 5, 25, 50 and 100 nmol/L)and the number of cells was counted via MTT assay. In addition, effect of ADAMTS13 on differentiation was assessed by measuring the length of capillary-like tube structures formed by HUVECS in matrigel. Effect of ADAMTS13 on HUVEC migration was assessed via calculation of wound healing distance after 8 hrs culture with VEGF or ADAMTS13. Chick embryo chorioallantoic membrane (CAM) assay and Matrigel plug assay were performed to investigate the effect of ADAMTS13 on angiogenesis in vivo.
RESULTSADAMTS13 significantly inhibited the proliferation of HUVECs induced by VEGF in a dose-dependent manner. Migration distance of HUVECs was (79 ± 22) μm in control group, (250 ± 8)μm in VEGF-treated group and (170 ± 23)μm in VEGF and ADAMTS13 cotreated-group after 8 hrs, respectively. The tube length is (450.6 ± 16.6)% in VEGF-treated group and (235.3 ± 19.0)% in VEGF and ADAMTS13 cotreated-group of that of control group after HUVECs cultured in matrigel for 16 hrs. The number of blood vessels decreased after treatment with ADAMTS13 in CAM assay. The number of blood vessels was (228.2 ± 10.8)%, (69.2 ± 21.1)%, (184.6 ± 15.2)% in VEGF treated-group, ADAMTS13 treated-group and VEGF and ADAMTS13 cotreated-group of that of control group, respectively. Formation of capillary-like network in matrigel plugs containing VEGF was reduced to 43.5% by ADAMTS13 in matrigel plug assay in mouse model.
CONCLUSIONADAMTS13 inhibits the HUVECs proliferation, differentiation and migration in vitro. ADAMTS13 inhibits chick embryos vascularization and formation of capillary-like network in vivo.
ADAM Proteins ; pharmacology ; ADAMTS13 Protein ; Animals ; Cell Movement ; Cell Proliferation ; Chick Embryo ; Chorioallantoic Membrane ; Collagen ; Drug Combinations ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Laminin ; Mice ; Neovascularization, Physiologic ; Proteoglycans ; Vascular Endothelial Growth Factor A
5.Influence of fibrinogen and laminin on bone mesenchymal stem cells osteogenic differentiation in PEGDA scaffold.
Yin LIU ; Zhi ZHAN ; Jing TIAN
Acta Academiae Medicinae Sinicae 2013;35(3):265-269
OBJECTIVETo explore the effects of fibrinogen(FG) and laminin(LN) in promoting the osteogenic differentiation of bone mesenchymal stem cells(BMSCs)in PEGDA scaffold.
METHODSAfter the rabbit BMSCs were isolated and cultured to passage 3. BMSCs were blended in PEGDA-FG or PEGDA-LN hydrogels and cultured for 7 days. The levels of osterix,osteopontin,osteocalcin,collagen 2,myocardin,PPARΓ,and integrins Α2,Α5,and Α6 in PEGDA-FG and PEGDA-LN constructs were determined. Immunohistochemistry was used to detect the expressions of myocardin,PPARΓ,and OPN in PEGDA-FG and PEGDA-LN constructs.
RESULTSThe expressions of osterix,OPN,and OC were significantly higher in PEGDA-FG scaffold than day 0(all P<0.05). The OPN and OC expression levels were significantly higher in PEGDA-LN scaffold than day 0(both P<0.05). In PEGDA-FG and PEGDA-LN scaffold,myocardin,PPARΓ and COL 2 expression level showed no significant differences than day 0(all P>0.05). Integrin Α2 was upregulated in PEGDA-LN scaffold than day 0(P<0.05). Integrin Α6 was upregulated in PEGDA-FG scaffold than day 0(P<0.05). Immunohistochemistry stain showed that OPN expression increased in PEGDA-FG and PEGDA-LN scaffolds.
CONCLUSIONFG and LN can promote rabbit BMSCs osteogenic differentiation in PEGDA three-dimensional scaffold.
Animals ; Bone Marrow Cells ; cytology ; drug effects ; Cell Differentiation ; Cells, Cultured ; Fibrinogen ; pharmacology ; Laminin ; pharmacology ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Osteogenesis ; drug effects ; Rabbits ; Tissue Scaffolds
6.Effects of Matrigel on expression of focal adhesion kinase and on proliferation and apoptosis of alveolar epithelial cell II of premature rat exposed to hyperoxia.
Hua WANG ; Wen-bin LI ; Li-wen CHANG
Chinese Journal of Pediatrics 2012;50(2):141-145
OBJECTIVETo investigate the effects of Matrigel on expression of focal adhesion kinase and on proliferation and apoptosis of alveolar epithelial cell II of premature rat exposed to hyperoxia.
METHODSThe primary premature rat AECII (gestation 19 d) were cultured in vitro. For establishing hyperoxia-exposed cell model, purified AECII were cultured for 12 hours after culture flasks were filled with 95% oxygen-5% CO2 at 5 L/min, and then sealed for 12 hours. DNA content, phosphor and total protein of FAK were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blotting respectively after 12 hours of air or hyperoxia exposure in the presence or absence of Matrigel. To investigate the relationship between FAK activated and proliferation or apoptosis of type II alveolar epithelial cells, levels of proliferation and apoptosis of AECII were measured by immunohistochemical assay of proliferating cell nuclear antigen (PCNA) and TUNEL method respectively.
RESULTSFAK and FAK-Tyr(397) activity of AECII on Matrigel-coated substrate increased: compared with air group, the expression of PCNA decreased and apoptotic index increased markedly in hyperoxia group (0.1498 ± 0.009 vs. 0.0953 ± 0.006, P < 0.05; 1.232 ± 0.6 vs. 13.40 ± 3.2, P < 0.01), but the expression of PCNA of AECII on Matrigel-coated substrate increased significantly (0.1498 ± 0.009 vs. 0.1921 ± 0.008, P < 0.01) and apoptotic index did not change. The expression of PCNA increased significantly (0.0953 ± 0.006 vs. 0.1125 ± 0.012, P < 0.05) and apoptotic index decreased markedly in hyperoxia + Matrigel group as compared with hyperoxia group (13.40 ± 3.2 vs. 7.641 ± 1.6, P < 0.05).
CONCLUSIONHyperoxia decreased the level of FAK and FAK-Tyr(397) in AECII, which may be a contributory mechanism of impaired proliferation and apoptosis of AECII in hyperoxia induced lung injury in premature rat. Matrigel could inhibit apoptosis and promote proliferation of AECII resulted from hyperoxia in vitro. Matrigel may play a protective role in hyperoxia-induced lung injury partly due to activated FAK.
Alveolar Epithelial Cells ; Animals ; Animals, Newborn ; Apoptosis ; Cell Proliferation ; Cells, Cultured ; Collagen ; pharmacology ; Drug Combinations ; Epithelial Cells ; drug effects ; enzymology ; Focal Adhesion Protein-Tyrosine Kinases ; metabolism ; Hyperoxia ; Laminin ; pharmacology ; Male ; Proteoglycans ; pharmacology ; Pulmonary Alveoli ; cytology ; enzymology ; pathology ; Rats ; Rats, Sprague-Dawley
7.Protective effects and mechanisms of xin'ganbao capsule on STZ induced early kidney injury in diabetic rats.
Jie GAO ; Li FAN ; Mao-Jing LIU
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(4):530-536
OBJECTIVETo discuss the protective effects of Xin'ganbao Capsule (XC) on early kidney injury in streptozocin (STZ)-induced diabetic rats and its mechanisms.
METHODSTwenty-four male Wistar rats were selected to establish STZ induced diabetes mellitus (DM) model. After modeling they were randomly divided into the model group,the XC group (at the daily dose of 0.5 g/kg), and the benazepril group (at the daily dose of 4 mg/kg), 8 in each group. Another 8 rats were chosen as the blank control group. Rats in the model group and the blank control group were administered with equal volume of normal saline by gastrogavage for 8 successive weeks. The blood glucose was monitored by the end of the 4th week and the 8th week. The 24 h urine protein (24 hUP), blood urea nitrogen (BUN), and serum creatinine (SCr) were detected by the end of the 8th week. The transforming growth factor-beta1 (TGF-beta1), laminin (LN), collagen IV (Col-IV) expression were detected using immunohistochemical assay. The mRNA expressions of renal TGF-beta1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and plasminogen activator inhibitor-1 (PAI-1) were detected using RT-PCR. The pathological changes of the renal tissue were observed by HE, PAS, and Masson stain methods.
RESULTSCompared with the blank control group, hyperglycemia, polydipsia, polyphagia, polyuria, weight loss, emaciation, dry and dim body hair, and irritability appeared in the diabetic rats. After 8 weeks the symptoms of the two medication groups were attenuated. When compared with the blank control group, the 24 hUP, SCr, blood glucose, Col-IV, LN, TGF-beta1 positive expression ratio, the levels of TGF-beta1, TIMP-1, PAI-1 mRNA, the area of glomerular (GA), extracellular matrix (ECM), and ECM/GA all increased in the model group with statistical difference (P<0.01). The pathological changes showed obvious glomerular enlargement, the capillary loop expansion, the proliferation of the mesangial cells, increased mesangial matrix, widen and thicken glomerular basement membrane (GBM), and tubular derangement. The vacuolar degeneration and shedding could be seen in partial epithelial cells. The protein cast could also be seen with infiltration of interstitial inflammatory cells. Compared with the model group, each index of the two medication groups decreased with statistical difference (P<0.01). The pathological changes were less in the two medication groups. The mesangial cells were slightly proliferated and the mesangial matrix slightly increased. The mRNA expressions of SCr and PAI-1 were lower in the XC group than in the benazepril group (P<0.05). There was no statistical difference in the other indices between the two medication groups (P > 0.05). Conclusions XC had some protective effects and anti-glomerulosclerosis effects on early kidney injury in STZ-induced diabetic rats. Its mechanisms might be associated with down-regulating the mRNA expressions of TGF-beta1, TIMP-1, PAI-1, and Col-IV, reducing ECM and urine protein.
Animals ; Benzazepines ; therapeutic use ; Collagen Type IV ; metabolism ; Diabetes Mellitus, Experimental ; drug therapy ; metabolism ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Extracellular Matrix ; metabolism ; Kidney ; pathology ; Laminin ; metabolism ; Male ; Plasminogen Activator Inhibitor 1 ; metabolism ; Rats ; Rats, Wistar ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism ; Transforming Growth Factor beta1 ; metabolism
8.Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathway and shows potent antitumor activity in hepatocarcinomas in Vitro and in Vivo.
Ya-yun QIAN ; Hua ZHANG ; Ying HOU ; Lin YUAN ; Guo-qing LI ; Shi-yu GUO ; Tadashi HISAMITS ; Yan-qing LIU
Chinese journal of integrative medicine 2012;18(10):752-760
OBJECTIVECelastrus orbiculatus Thunb. has been used for thousands of years in China as a remedy against cancer and inflammatory diseases. This study aims to investigate whether C. orbiculatus extract (COE) could inhibit angiogenesis, which is the pivotal step in tumor growth, invasiveness, and metastasis.
METHODSIn this study, the extract from the stem of C. orbiculatus was used. Mouse hepatic carcinoma cells (Hepa1-6) were treated with COE in different nontoxic concentrations (10, 20, 40, 80, and 160 μg/mL). The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively; the active fractions were further tested on C57BL/6 mice and human umbilical vein endothelial cells (HUVEC) for any antiangiogenic effects.
RESULTSCOE significantly inhibited proliferation and induced apoptosis in Hepa1-6 cells and inhibited VEGF expression at both mRNA and protein levels. Furthermore, this agent inhibited the formation of the capillary-like structure in primary cultured HUVEC in a dose-dependent manner. In vivo, COE significantly reduced the volume and weight of solid tumors with low adverse effects and decreased tumor angiogenesis.
CONCLUSIONSIn summary, COE could be used to treat hepatic carcinoma. The mechanisms of the antitumor activity of COE may be due to its effects against tumor angiogenesis by targeting the VEGF protein.
Administration, Oral ; Angiogenesis Inhibitors ; pharmacology ; therapeutic use ; Animals ; Antineoplastic Agents ; pharmacology ; therapeutic use ; Apoptosis ; drug effects ; Carcinoma, Hepatocellular ; blood supply ; drug therapy ; pathology ; Celastrus ; chemistry ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Collagen ; metabolism ; Drug Combinations ; Human Umbilical Vein Endothelial Cells ; drug effects ; Humans ; Laminin ; metabolism ; Liver Neoplasms ; blood supply ; drug therapy ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic ; drug therapy ; pathology ; Neovascularization, Physiologic ; drug effects ; Phytotherapy ; Plant Extracts ; administration & dosage ; pharmacology ; therapeutic use ; Plant Stems ; chemistry ; Proteoglycans ; metabolism ; Signal Transduction ; drug effects ; Transcriptional Activation ; drug effects ; genetics ; Tumor Burden ; drug effects ; Vascular Endothelial Growth Factor A ; biosynthesis ; metabolism
9.Effects of rhynchophylla alkaloids on vascular adventitial fibroblast apoptosis and proliferation in the thoracic aorta of spontaneously hypertensive rats.
Guo-Hua DAI ; Jing-Chang SUN ; Dong-Mei QI
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(9):1233-1237
OBJECTIVETo study the effects of rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids on the vascular adventitial fibroblasts (VAF) apoptosis and proliferation in thoracic aorta of spontaneously hypertensive rats (SHR), and on the Bcl-2, Bax, c-Fos, c-Myc, laminin (LN), and fibronectin (FN).
METHODSForty 8-week old male SHR were randomly divided into five groups, i. e., the model group, the captopril group (17.5 mg/kg), the isorhynchophylline group (5.0 mg/kg), the rhynchophylline group (5.0 mg/kg), and the rhynchophylla alkaloids group (50.0 mg/kg), 8 in each group. In addition, eight 8-week old male Wistar rats were selected as the normal group. Equal volume of normal saline was given to rats in the normal group and the model group by gastrogavage. Rats in the rest groups were perfused with isovolumic medication solution (10 mL/kg), six days per week for eight successive weeks. The dosage of drugs was adjusted according to the change of body weight. The VAF apoptosis rate of the thoracic aorta was measured by Annexin V-FITC combined with PI dyeing and flow cytometry. The protein expressions of thoracic aortic Bcl-2, Bax, c-Myc, c-Fos, FN, and LN were detected by immunohistochemical assay. The adventitial transforming growth factor beta1 (TGF-beta1) mRNA expression in the thoracic aorta was detected by in situ hybridization method.
RESULTSCompared with the model group, the tail arterial systolic pressure decreased, the VAF apoptosis and the protein expression of Bax increased, Bcl-2, c-Fos, FN, LN, and TGF-beta1 mRNA all decreased in the thoracic aorta of SHR in each treatment group after 4-and 8-week of intervention. Rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids could inhibit the protein expression of c-Myc with statistical difference (P<0.05, P<0.01). Compared with the captopril group, there was no statistical difference in decreasing the tail arterial systolic pressure, the protein expression of c-Fos and the mRNA expression of TGF-beta1 among the rhynchophylline group, the isorhynchophylline group, and the rhynchophylla alkaloids group (P>0.05). There was statistical difference in increased VAF apoptosis and decreased protein expressions of Bcl-2, c-Myc, and LN (P<0.05, P<0.01). There was statistical difference in increased protein expression of Bax between the rhynchophylline group and the isorhynchophylline group (P<0.05, P<0.01). There was statistical difference in decreased protein expression of FN in the isorhynchophylline group (P<0.05). There was no significant difference among the rhynchophylline group, the isorhynchophylline group, or the rhynchophylla alkaloids group (P>0.05).
CONCLUSIONSRhynchophylline, isorhynchophylline, and rhynchophylla alkaloids might promote the VAF apoptosis in the thoracic aorta of SHR by regulating the protein expressions of Bcl-2 and Bax. They might inhibit the VAF proliferation by restraining protein expressions of c-Fos, c-Myc, and TGF-beta1 mRNA. They also might improve the thoracic aorta wall reconstruction and decrease the tail arterial systolic pressure by down-regulating the protein expressions of FN and LN, and attenuating the deposition of extracellular matrix.
Animals ; Aorta, Thoracic ; cytology ; Apoptosis ; drug effects ; Fibroblasts ; cytology ; metabolism ; Fibronectins ; metabolism ; Indole Alkaloids ; pharmacology ; Laminin ; metabolism ; Male ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Proto-Oncogene Proteins c-fos ; metabolism ; Proto-Oncogene Proteins c-myc ; metabolism ; Rats ; Rats, Inbred SHR ; Transforming Growth Factor beta1 ; metabolism ; bcl-2-Associated X Protein ; metabolism
10.The effects of thrombopoietin on the fibrogenesis of bone marrow stromal cells in absence of megakaryocytes.
Jian-Liang SHEN ; You-Zhang HUANG ; Wen-Jie YIN ; Jian CEN ; Pei-Hao ZHENG ; Li-Zhong GONG ; Yi LIU
Chinese Journal of Applied Physiology 2011;27(2):163-166
OBJECTIVEIn order to investigate whether or not thrombopoietin (TPO) could promote the fibrogenesis of bone marrow stromal cells in absence of megakaryocytes (MKs).
METHODSImproved dexter culture system with various TPO concentrations was used for ex vivo culture of bone marrow stromal cells. Relative proliferation index, the expressions of fibronectin, laminin and type IV collagen, and the systhesis of type III procollagen were detected at different time points during culture process.
RESULTSTPO stimulated the proliferation of bone marrow stromal cells. Relative proliferation index of the stromal cells increased with the TPO concentration increasing, and was not related to the exposure time. The expressions of fibronectin, laminin, and type IV collagen appeared stronger in the TPO groups than those in the control group. But the expressions of these molecules were not dependent upon the culture time. TPO could accelerate the synthesis of type III procollagen in bone marrow stromal cells, and this acceleration was unrelated to the TPO concentration.
CONCLUSIONThese findings suggested that TPO could stimulate the stromal cells with a consequence of increased syntheses and secretions of the extracellular matrix and collagen in absence of MKs. In other words, TPO could promote the fibrogenesis of bone marrow stromal cells without the existence of MKs.
Cells, Cultured ; Collagen Type III ; metabolism ; Collagen Type IV ; metabolism ; Extracellular Matrix ; metabolism ; Fibronectins ; metabolism ; Fibrosis ; pathology ; Humans ; Laminin ; metabolism ; Megakaryocytes ; cytology ; Mesenchymal Stromal Cells ; cytology ; metabolism ; pathology ; Thrombopoietin ; pharmacology

Result Analysis
Print
Save
E-mail