1.Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells.
Lei CHANG ; Mengfan LI ; Shipeng SHAO ; Chen LI ; Shanshan AI ; Boxin XUE ; Yingping HOU ; Yiwen ZHANG ; Ruifeng LI ; Xiaoying FAN ; Aibin HE ; Cheng LI ; Yujie SUN
Protein & Cell 2022;13(4):258-280
The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the inter-chromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.
Chromatin
;
Chromosomes
;
Genome
;
Humans
;
Lamin Type B/genetics*
2.A case report of laminopathy-cardiomyopathy.
Chinese Journal of Cardiology 2022;50(10):1023-1026
3.Analysis of a child with congenital muscular dystrophy due to a novel variant of the LMNA gene.
Wenting TANG ; Ruohao WU ; Kunyin QIU ; Xu ZHANG ; Zhanwen HE
Chinese Journal of Medical Genetics 2021;38(9):857-860
OBJECTIVE:
To report on a patient with congenital muscular dystrophy (CMD) due to a missense variant of LMNA gene and explore its pathogenicity.
METHODS:
The 1-year-and-1-month-old boy has presented with motor development delay and elevation of muscle enzymes for more than half a year. Congenital myopathy was suspected. Following muscle biopsy, HE staining, immunostaining and electron microscopy were conducted to clarify the clinical diagnosis. Meanwhile, DNA was extracted from the child and his parents' peripheral venous blood samples. Trio-whole exome sequencing (trio-WES) was carried out to detect pathogenic variant in the child. Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
Both light and electron microscopy showed a large area of necrotic muscle tissues with infiltration of inflammatory cells. Immunohistochemistry revealed a large amount of muscle cells to be diffusely positive for Dysferlin. The patient's motor delays, elevations of muscle enzymes and histopathological results suggested a clinical diagnosis of CMD. A de novo missense c.1072G>A (p.E358K) variant was detected in the LMNA gene by trio-WES. The variant was unreported previously (PS2) and was absent from major allele frequency databases (PM2). It was a loss of function variant and was considered as hotspot variant in the LMNA gene (PM1) as the amino acid (E), located in position 358, was highly conserved, and change of this amino acid was found to cause destruction of the filament domain (AA: 30-386), which may result in serious damage to the intermediate filament protein. Furthermore, c.1072G>A (p. E358K) in LMNA gene was also predicted to be pathogenic based on MutationTaster, PROVEAN and PolyPhen-2 (PP3) analysis. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), the variant was classified to be likely pathogenic (PS2+PM1+PM2+PP3).
CONCLUSION
The child's condition may be attributed to the de novo missense c.1072 G>A (p.E358K) variant of the LMNA gene. Above discovery has expanded the variant spectrum of the LMNA gene.
Gene Frequency
;
Genomics
;
Humans
;
Infant
;
Lamin Type A/genetics*
;
Male
;
Muscular Dystrophies/genetics*
;
Mutation
;
Whole Exome Sequencing
4.Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing.
Fang WANG ; Weiqi ZHANG ; Qiaoyan YANG ; Yu KANG ; Yanling FAN ; Jingkuan WEI ; Zunpeng LIU ; Shaoxing DAI ; Hao LI ; Zifan LI ; Lizhu XU ; Chu CHU ; Jing QU ; Chenyang SI ; Weizhi JI ; Guang-Hui LIU ; Chengzu LONG ; Yuyu NIU
Protein & Cell 2020;11(11):809-824
Many human genetic diseases, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by single point mutations. HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene. Base editors (BEs) composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions. Here, we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA (gRNA) targeting the LMNA gene via microinjection into monkey zygotes. Five out of six newborn monkeys carried the mutation specifically at the target site. HGPS monkeys expressed the toxic form of lamin A, progerin, and recapitulated the typical HGPS phenotypes including growth retardation, bone alterations, and vascular abnormalities. Thus, this monkey model genetically and clinically mimics HGPS in humans, demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.
Animals
;
Disease Models, Animal
;
Female
;
Gene Editing
;
Humans
;
Lamin Type A/metabolism*
;
Macaca fascicularis
;
Progeria/pathology*
5.Functions of lamin B1 and the new progress of its roles in neurological diseases and tumors.
Siyang LIU ; Yong WU ; Linfei YANG ; Xiaohua LI ; Lihua HUANG ; Xiaowei XING
Chinese Journal of Biotechnology 2018;34(11):1742-1749
Lamin B1 is one of the essential members of the nuclear lamina protein family. Its main function is to maintain the integrity of nuclear skeleton, as well as to participate in the cell proliferation and aging by affecting the chromosome distribution. gene expression, and DNA damage repair. The abnormal expression of lamin B1 is related to certain diseases, including neurological diseases [e.g. neural tube defects (NDTs), adult-onset autosomal dominant leukodystrophy (ADLD)] and tumors (e.g. pancreatic cancer). It is also a potential tumor marker as well as drug target. Further research on lamin B1 will help people understand the molecular mechanism of the emergence and development of neural system diseases and tumors, and define a new future in drug target.
Cell Nucleus
;
Gene Expression
;
Humans
;
Lamin Type B
;
physiology
;
Neoplasms
;
Nervous System Diseases
6.Clinical and genetic features of limb-girdle muscular dystrophy type 1B: a case report.
Xin-Xiu YU ; Jing-Zi ZHONG ; Hong-Lin GUAN ; Min ZHANG ; Dan LAN
Chinese Journal of Contemporary Pediatrics 2018;20(12):1015-1019
This article reports a case of limb-girdle muscular dystrophy type 1B (LGMD1B) caused by a novel splicing heterozygous mutation in the LMNA gene. The proband presented with progressive aggravation of weakness in walking. There was no atrophy of the scapular muscles and the lower-extremity proximal muscles, with normal muscle tension of the extremities, grade 4 muscle strength in the upper and lower extremities, and positive Gower sign. The level of creatine kinase was 779 U/L. Muscle hematoxylin-eosin staining showed muscular dystrophy, and there was no significant reduction in the expression of Lamin A protein. Second-generation sequencing revealed a novel splicing heterozygous mutation, c.810+2T>C, in the LMNA gene, while this locus was normal in his parents. GERP++RS software predicted that the mutation site was highly conservative. Human Splice Finder and Spliceman software predicted that the mutation might be a pathogenic mutation. ExPASy software predicted that the new amino acid sequence became shorter. There were two sequences of mRNA in the patient's muscle: one was the normal sequence, which accounted for 92.2%; the other was partial intron 4 retention, which was the abnormal splice variant accounting for 7.8%. LGMD1B is a type of autosomal dominant inherited myopathy caused by a mutation in the LMNA gene located on the autosomal 1q22. This study extends the mutation spectrum of the LMNA gene and provides help to the diagnosis of LGMD1B.
Amino Acid Sequence
;
Humans
;
Lamin Type A
;
Muscular Dystrophies, Limb-Girdle
;
Mutation
7.Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome.
Zeming WU ; Weiqi ZHANG ; Moshi SONG ; Wei WANG ; Gang WEI ; Wei LI ; Jinghui LEI ; Yu HUANG ; Yanmei SANG ; Piu CHAN ; Chang CHEN ; Jing QU ; Keiichiro SUZUKI ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU
Protein & Cell 2018;9(4):333-350
Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product-progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNA mutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging.
Aging
;
genetics
;
physiology
;
DNA Helicases
;
genetics
;
Human Embryonic Stem Cells
;
metabolism
;
physiology
;
Humans
;
Kinetics
;
Lamin Type A
;
genetics
;
Mesenchymal Stem Cells
;
metabolism
;
physiology
;
Mutation
;
Progeria
;
genetics
;
physiopathology
;
Werner Syndrome
;
genetics
;
physiopathology
8.A novel c.563 T>G, p.L189R lamin A/C mutation in identical twins with dilated cardiomyopathy.
Euijae LEE ; Kyung Taek PARK ; Jinwoo KANG ; Hyunkyung PARK ; Jin Joo PARK ; Il Young OH ; Yeonyee E YOON
The Korean Journal of Internal Medicine 2017;32(1):178-181
No abstract available.
Cardiomyopathy, Dilated*
;
Humans
;
Lamin Type A
;
Twins, Monozygotic*
10.Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown ofgenes in zebrafish embryos.
Shifang HOU ; Zhihua WANG ; Jun WANG ; Zhixu HE ; Liping SHU ;
Journal of Zhejiang University. Medical sciences 2016;45(6):620-625
To investigate the effect ofgene down-regulation on early hematopoietic development of zebrafish.Phosphorodiamidate morpholino oligomer (PMO) technology was used to downregulategene expression in Zebrafish. Zebrafish embryos injected phosphorodiamidate morpholino antisense oligonucleotide ofgene mRNA by microinjection at unicellular stage were taken as the experimental group, and those injected meaningless phosphorodiamidate morpholino antisense oligonucleotide were taken as the control. The embryos were collected at 18, 24, 30 and 36 hpf after the fertilization. The real-time fluorescent quantitative PCR (RT-PCR) and whole embryohybridization methods were used to detect the expression of myeloid hematopoietic transcription factorand erythroid hematopoietic transcription factorin zebrafish.RT-PCR showed that the expressions ofanddecreased in the experimental group compared with the control group (all<0.05). Whole embryohybridization showed that the blue-black positive hybridization signals ofandin experimental group were shallow than those in the control group.Myeloid hematopoietic and erythroid hematopoietic of zebrafish are blocked with the downregulation ofgene.
Animals
;
Down-Regulation
;
genetics
;
Embryo, Nonmammalian
;
physiopathology
;
GATA1 Transcription Factor
;
genetics
;
metabolism
;
Gene Knockdown Techniques
;
Hematopoiesis
;
In Situ Hybridization
;
Lamin Type A
;
genetics
;
physiology
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Zebrafish
;
embryology
;
genetics

Result Analysis
Print
Save
E-mail