1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Analysis of epidemiological and clinical characteristics of 1247 cases of infectious diseases of the central nervous system
Jia-Hua ZHAO ; Yu-Ying CEN ; Xiao-Jiao XU ; Fei YANG ; Xing-Wen ZHANG ; Zhao DONG ; Ruo-Zhuo LIU ; De-Hui HUANG ; Rong-Tai CUI ; Xiang-Qing WANG ; Cheng-Lin TIAN ; Xu-Sheng HUANG ; Sheng-Yuan YU ; Jia-Tang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):43-49
Objective To summarize the epidemiological and clinical features of infectious diseases of the central nervous system(CNS)by a single-center analysis.Methods A retrospective analysis was conducted on the data of 1247 cases of CNS infectious diseases diagnosed and treated in the First Medical Center of PLA General Hospital from 2001 to 2020.Results The data for this group of CNS infectious diseases by disease type in descending order of number of cases were viruses 743(59.6%),Mycobacterium tuberculosis 249(20.0%),other bacteria 150(12.0%),fungi 68(5.5%),parasites 18(1.4%),Treponema pallidum 18(1.4%)and rickettsia 1(0.1%).The number of cases increased by 177 cases(33.1%)in the latter 10 years compared to the previous 10 years(P<0.05).No significant difference in seasonal distribution pattern of data between disease types(P>0.05).Male to female ratio is 1.87︰1,mostly under 60 years of age.Viruses are more likely to infect students,most often at university/college level and above,farmers are overrepresented among bacteria and Mycobacterium tuberculosis,and more infections of Treponema pallidum in workers.CNS infectious diseases are characterized by fever,headache and signs of meningeal irritation,with the adductor nerve being the more commonly involved cranial nerve.Matagenomic next-generation sequencing improves clinical diagnostic capabilities.The median hospital days for CNS infectious diseases are 18.00(11.00,27.00)and median hospital costs are ¥29,500(¥16,000,¥59,200).The mortality rate from CNS infectious diseases is 1.6%.Conclusions The incidence of CNS infectious diseases is increasing last ten years,with complex clinical presentation,severe symptoms and poor prognosis.Early and accurate diagnosis and standardized clinical treatment can significantly reduce the morbidity and mortality rate and ease the burden of disease.
7.Application status and research progress of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery
Bao-Hua YUAN ; Hai-Ping LIU ; Xing-Yong LI ; Xiao-Ting LIU ; Ji-Hai MA ; Xu-Sheng ZHANG ; Hao-Fei YANG ; Jin-Sheng LI ; Sheng-Long HAN
The Chinese Journal of Clinical Pharmacology 2024;40(7):1080-1084
Tranexamic acid is widely used in joint orthopedic surgery.At the same time,it has high safety and few adverse drug reactions.It can effectively improve intraoperative bleeding and promote early functional recovery of patients.This article reviews the mode of administration,safe dose,administration time and adverse drug reactions of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery,in order to provide reference for the clinical application of tranexamic acid.
8.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
9.Advances in SARS-CoV-2 S protein-induced inflammatory response of respiratory epithelial cells
Xing-Jian LIU ; Hua-Hua ZHANG ; Rui-Gang ZHANG
Chinese Journal of Infection Control 2024;23(1):112-118
Pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection poses a threat to human life and health,resulting in great socio-economic losses.The structural protein spike protein(S protein)of viruses has always been considered to primarily mediate virus invasion into host cells.S protein can act independently of viruses and cause inflammatory reactions on a variety of cells,therefore,understanding the impact of S protein on the respiratory tract can provide a new perspective for the prevention and treatment of COVID-19.This article reviews the advances in the possible mechanisms and clinical manifestations of SARS-CoV-2 structural protein S protein-induced inflammatory response in respiratory epithelial cells,aiming to provide reference for the prevention and treatment of diseases.
10.Effect of anterior cingulate cortex-nucleus accumbens GABAergic cir-cuit on irritable bowel syndrome in mice and its underlying mechanisms
Ruixiao GUO ; Shengli GAO ; Xufei FENG ; Hua LIU ; Xing MING ; Jinqiu SUN ; Xinchi LUAN ; Zhenyu LIU ; Weiyi LIU ; Feifei GUO
Chinese Journal of Pathophysiology 2024;40(5):815-826
AIM:To investigate the effects of the γ-aminobutyric acid(GABAergic)neural pathway from the anterior cingulate cortex(ACC)to the nucleus accumbens(NAc)on the regulation of irritable bowel syndrome(IBS)and its underlying mechanisms in mice.METHODS:(1)A C57BL/6J mice model of IBS was established by using chronic acute combing stress(CACS).The mice were divided into a normal group and an IBS group(n=8).The presence of IBS-like symptoms was determined through behavioural tests,an intestinal motility test and abdominal withdrawal reflex scores.(2)Fluorescence gold(FG)retrograde tracing and immunohistochemistry were used to investigate the ACC-NAc GABAergic neural pathway and to examine the activation of GABA in the ACC in IBS mice(n=8).(3)A total of 1.5 μL of normal saline(NS),GABAA receptor antagonist bicuculline(BIC)or agonist isoguvacine hydrochloride(Isog)was ad-ministered via a preburied catheter into the NAc of mice in IBS and normal groups.The mice were randomly divided into three groups(n=8):NS group,BIC group and Isog group.IBS-like symptoms were assessed.(4)The mice were prein-jected with AAV2/9-mDlx-iCre-WPRE-pA in the ACC and AAV2/2Retro Plus-hSyn-DIO-hM3D(Gq)-eGFP-WPRE-pA in the NAc and subsequently divided into four groups(n=8):NS(intraperitoneal injection)+NS(NAc microinjection)group,NS+BIC group,clozapine N-oxide(CNO)+NS group and CNO+BIC group.The mice who received AAV2/2Retro-hSyn-DIO-hM4D(Gi)-EGFP-WPRE-pA in the NAc were randomly divided into three groups(n=8):NS+NS group,NS+BIC group and CNO+NS group.Enzyme-linked immunosorbent assay(ELISA)was employed to estimate the expression levels of histamine and 5-hydroxytryptamine(5-HT)in colon tissue,and the effects of GABAergic neural pathways from ACC to NAc on IBS were studied.RESULTS:CACS induced IBS-like symptoms in mice.The results of FG retrograde tracing combined with fluorescence immunohistochemistry showed that GABA neurons of ACC could project to NAc.The injection of BIC in the NAc was found to significantly reduce anxiety-like behaviours,diarrheal symptoms and visceral hy-persensitivity in the IBS mice(P<0.05).Chemogenetic inhibition of the ACC-NAc GABAergic neurons ameliorated IBS-like symptoms in mice(P<0.05).CONCLUSION:The GABAergic pathway of ACC-NAc might be involved in the regu-lation of IBS in mice,which may be related to the release of histamine and 5-HT in colon tissue.

Result Analysis
Print
Save
E-mail