1.LIM domain only 1: an oncogenic transcription cofactor contributing to the tumorigenesis of multiple cancer types.
Guo-Fa ZHAO ; Li-Qin DU ; Lei ZHANG ; You-Chao JIA
Chinese Medical Journal 2021;134(9):1017-1030
The LIM domain only 1 (LMO1) gene belongs to the LMO family of genes that encodes a group of transcriptional cofactors. This group of transcriptional cofactors regulates gene transcription by acting as a key "connector" or "scaffold" in transcription complexes. All LMOs, including LMO1, are important players in the process of tumorigenesis. Unique biological features of LMO1 distinct from other LMO members, such as its tissue-specific expression patterns, interacting proteins, and transcriptional targets, have been increasingly recognized. Studies indicated that LMO1 plays a critical oncogenic role in various types of cancers, including T-cell acute lymphoblastic leukemia, neuroblastoma, gastric cancer, lung cancer, and prostate cancer. The molecular mechanisms underlying such functions of LMO1 have also been investigated, but they are currently far from being fully elucidated. Here, we focus on reviewing the current findings on the role of LMO1 in tumorigenesis, the mechanisms of its oncogenic action, and the mechanisms that drive its aberrant activation in cancers. We also briefly review its roles in the development process and non-cancer diseases. Finally, we discuss the remaining questions and future investigations required for promoting the translation of laboratory findings to clinical applications, including cancer diagnosis and treatment.
Carcinogenesis/genetics*
;
DNA-Binding Proteins/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
LIM Domain Proteins/genetics*
;
Male
;
Transcription Factors/metabolism*
2.Impact of LDB3 gene polymorphisms on clinical presentation and implantable cardioverter defibrillator (ICD) implantation in Chinese patients with idiopathic dilated cardiomyopathy.
Dong-Fei WANG ; Jia-Lan LYU ; Juan FANG ; Jian CHEN ; Wan-Wan CHEN ; Jia-Qi HUANG ; Shu-Dong XIA ; Jian-Mei JIN ; Fang-Hong DONG ; Hong-Qiang CHENG ; Ying-Ke XU ; Xiao-Gang GUO
Journal of Zhejiang University. Science. B 2019;20(9):766-775
OBJECTIVE:
Mutations in LIM domain binding 3 (LDB3) gene cause idiopathic dilated cardiomyopathy (IDCM), a structural heart disease with a complicated genetic background. However, the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation.
METHODS:
We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls. Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM. Additionally, we conducted a stratified genotype-phenotype correlation analysis.
RESULTS:
The A allele of rs4468255 was significantly associated with IDCM (P<0.01). The rs4468255, rs11812601, rs56165849, and rs3740346 were also associated with diastolic blood pressure (DBP) and left ventricular ejection fraction (LVEF) (P<0.05). Notably, a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator (ICD) recipients under a recessive model (P<0.01), whereas the significant association disappeared after adjusting for potential confounders. However, in the dominant model, notable correlations could only be observed after adjusting for multi parameters.
CONCLUSIONS
The rs4468255 was significantly correlated with IDCM of Chinese Han population. A allele of rs4468255 is higher in IDCM patients with ICD implantation, suggesting the influence of genetic background in the generation of this response. In addition, rs11812601, rs56165849, and rs3740346 in LDB3 show association with brain natriuretic peptide, DBP, and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.
Adaptor Proteins, Signal Transducing/genetics*
;
Adult
;
Aged
;
Alleles
;
Asian People
;
Cardiomyopathy, Dilated/surgery*
;
China/epidemiology*
;
Defibrillators, Implantable
;
Exons
;
Female
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
LIM Domain Proteins/genetics*
;
Linkage Disequilibrium
;
Male
;
Middle Aged
;
Mutation
;
Polymorphism, Genetic
;
Sequence Analysis, DNA
4.Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer.
Tian YU ; John BACHMAN ; Zhi-Chun LAI
Protein & Cell 2015;6(1):6-11
In recent years, human cancer genome projects provide unprecedented opportunities for the discovery of cancer genes and signaling pathways that contribute to tumor development. While numerous gene mutations can be identified from each cancer genome, what these mutations mean for cancer is a challenging question to address, especially for those from less understood putative new cancer genes. As a powerful approach, in silico bioinformatics analysis could efficiently sort out mutations that are predicted to damage gene function. Such an analysis of human large tumor suppressor genes, LATS1 and LATS2, has been carried out and the results support a role of hLATS1//2 as negative growth regulators and tumor suppressors.
Adaptor Proteins, Signal Transducing
;
chemistry
;
metabolism
;
Animals
;
Carrier Proteins
;
chemistry
;
metabolism
;
Computational Biology
;
Genes, Neoplasm
;
Humans
;
LIM Domain Proteins
;
chemistry
;
metabolism
;
Mice
;
Mutation
;
Neoplasms
;
genetics
;
pathology
;
Phosphoproteins
;
chemistry
;
metabolism
;
Phosphorylation
;
Protein Binding
;
Protein Structure, Tertiary
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
metabolism
;
Transferases (Other Substituted Phosphate Groups)
;
chemistry
;
metabolism
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
metabolism
5.Ribotrap analysis of proteins associated with FHL3 3'untranslated region in glioma cells.
Wei HAN ; Qing XIA ; Bin YIN ; Xiao-Zhong PENG
Chinese Medical Sciences Journal 2014;29(2):78-84
OBJECTIVETo screen the proteins associated with four-and-a-half LIM domains 3 (FHL3) 3' untranslated region (3'UTR) in glioma cells.
METHODSWestern blot was adopted to detect the regulatory effect of poly(C)-binding protein 2 (PCBP2) on FHL3. Biotin pull-down and sliver staining were employed to screen and verify the candidate binding proteins of FHL3 3'UTR. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecule annotation system were used to identify and analyze the candidate binding proteins. Immuno- precipitation was conducted to study the interaction between PCBP2 and polypyrimidine tract-binding protein 1 (PTBP1), a binding protein identified by LC-MS/MS.
RESULTSPCBP2 could bind to FHL3 mRNA 3'UTR-A and inhibited the expression of FHL3 in T98G glioms cells. 22 candidate binding proteins were identified. Among them, there were 11 RNA binding proteins, including PCBP2. PTBP1 associated with FHL3 mRNA 3'UTR and interacted with PCBP2 protein.
CONCLUSIONSPCBP2 and PTBP1 can both associate with FHL3 mRNA 3'UTR through forming a protein complex.
3' Untranslated Regions ; Base Sequence ; Blotting, Western ; Brain Neoplasms ; genetics ; metabolism ; Cell Line, Tumor ; Chromatography, Liquid ; DNA Primers ; Glioma ; genetics ; metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; metabolism ; LIM Domain Proteins ; metabolism ; Neoplasm Proteins ; metabolism ; Tandem Mass Spectrometry
6.Expression of microRNA-223 in lymphocytic leukemia cells and its action mechanism.
Zhen NAN ; Yong LIANG ; Rong FU ; Hui LIU ; Er-Bao RUAN ; Xiao-Ming WANG ; Guo-Jin WANG ; Wen QU ; Hong LIU ; Yu-Hong WU ; Jia SONG ; Li-Min XING ; Jing GUAN ; Li-Juan LI ; Hua-Quan WANG ; Zong-Hong SHAO
Journal of Experimental Hematology 2013;21(3):556-561
This study was aimed to investigate the expression level and mechanism of microRNA-223 and LMO2 in acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) cells and the mechanism. MicroRNA-223 mimics was transfected to increase the expression of MicroRNA-223 in the lymphocytes sorted by ficoll separation from the bone marrow mononuclear cells (BMMNC) of ALL and CLL patients. MicroRNA-223 inhibitor was transfected to decrease the expression of the MicroRNA-223 in the lymphocytes of normal controls. Then the expression of the MicroRNA-223 and LMO2 in transfected lymphocytes before and after cultivating for 72 hours were detected by RT-PCR, the apoptosis and cell cycle of these cells were measured by flow cytometery. The results indicated that before the transfection, the expression of MicroRNA-223 in ALL and CLL cells was (433.11 ± 144.88), which was significantly lower than that in the normal lymphocyte (949.59 ± 267.39); the expression of LMO2 was (807.10 ± 238.41), which was significantly higher than that in the normal lymphocytes (455.32 ± 176.83) (P < 0.05); after the transfection, the expression of MicroRNA-223 was (571.86 ± 142.00) in ALL and CLL cells, which was significantly higher than that before transfection (P < 0.05), but the expression of LMO2 was significantly lower than that before transfection (651.97 ± 230.12) (P < 0.05); in the normal control the expression of MicroRNA-223 obviously decreased (646.32 ± 172.93) (P < 0.05), the expression of LMO2 was significantly increased (541.27 ± 158.86.2) (P < 0.05). After transfection, the cell cycle G1/G2 phase and apoptosis changed in ALL and CLL cells. Before transfection the cell ratio in cell cycle G1/G2 phase was (94.75 ± 3.15)%, the cell ratio in S phase was (5.14 ± 3.12)%; after transfection the cell ratio in cell cycle G1/G2 phase was (97.03 ± 2.08)% and obviously increased (P < 0.05), the cell ratio in S phase was (2.97 ± 2.08)% and significantly decreased (P < 0.05). Before transfection the apoptosis rate was (54.47 ± 8.72)%, and obviously was higher than that after transfection (60.48 ± 8.81)%. And in the normal control, the cell ratio in G1/G2 phase was significantly higher than that after transfection [(96.73 ± 2.26)%, (94.55 ± 2.77)%, P < 0.05)], and the cell ratio in S phase was significantly increased [(3.25 ± 2.26)%, (5.45 ± 2.77)% (P < 0.05)]. The apoptotic rate in the ALL and CLL patients was significantly higher than that after the transfection [(54.47 ± 8.72)% vs (60.48 ± 8.81)%, respectively (P < 0.05)]. The apoptotic rate in the normal control was significantly lower than that after the transfection [(59.02 ± 10.20)%, (51.96 ± 10.20)%, respectively (P < 0.05)]. It is concluded that the expression of MicroRNA-223 decreases, and the expression of LMO2 increases in lymphocytic leukemia cells which leads to the lymphocytes over-proliferation and abnormal apoptosis, thus may be one of pathogenesis in lymphocytic leukemia.
Adaptor Proteins, Signal Transducing
;
genetics
;
metabolism
;
Adolescent
;
Adult
;
Aged
;
Apoptosis
;
Case-Control Studies
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Female
;
Humans
;
LIM Domain Proteins
;
genetics
;
metabolism
;
Leukemia, Lymphocytic, Chronic, B-Cell
;
genetics
;
metabolism
;
Male
;
MicroRNAs
;
genetics
;
metabolism
;
Middle Aged
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Transfection
;
Young Adult
7.Effects of recombinant gene lentivirus containing LIM mineralization protein-1 on proliferation effect and expression of bone marrow mesenchymal stem cells in rats.
Chang-sheng LIANG ; Chuan XIANG ; Zeng-yong WEI ; Hui-ming HOU ; Ying-ze QIN ; Xiao-chun WEI
China Journal of Orthopaedics and Traumatology 2013;26(12):1023-1027
OBJECTIVETo explore method of recombinant gene lentivirus containing LIM mineralization protein-1 (LMP-1) in transfecting bone marrow mesenchymal stem cells (BMSC), and to observe the effect of gene LMP-1 on proliferation effect and expression of BMSC.
METHODSSix clean SD rats aged 4 weeks were selected, bone marrow mesenchymal stem cells were extracted under sterile conditions and cultured to the third generation, then divided into three groups:control group (the third generation of BMSC), lentiviral vector transfection group (PGC-FU-GFP and Polybrene were injected into the third generation of BMSC) and recombinant gene transfection group (PGC-FU-LMP-1-GFP and Polybrene transfection were injected into the third generation of BMSC). After 48 hours' transfection, fluorescent expression were detected under immuno-fluorescence microscopy; lentiviral transfection efficiency were detected by flow cytometry; effect of lentiviral transfection on BMSC were evaluated by MTT; gene expression of transfected cells were determined by Western Blot.
RESULTS1) The third generation of BMSC was cultured successfully,and transfected with MOI:100. After 48 hours, green fluorescent expression were detected and transfection efficiency was 67% under immuno-fluorescence microscopy; 2) Compared to control group, there were no statistical differences between control group and other two groups; 3) Western blot teast showed that 72KDa specific band was observed in recombinant gene transfection group and its size was similar to LMP-1 fusion protein (50 kDa+28 kDa=78 kDa).
CONCLUSIONThere is no effect of recombinant gene lentivirus containing LIM on BMSC, and can effectively influence the expression of LMP-1.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Animals ; Cell Proliferation ; Cells, Cultured ; Cytoskeletal Proteins ; genetics ; metabolism ; Female ; Genetic Therapy ; Genetic Vectors ; genetics ; metabolism ; Humans ; LIM Domain Proteins ; genetics ; metabolism ; Lentivirus ; genetics ; metabolism ; Male ; Mesenchymal Stromal Cells ; cytology ; metabolism ; virology ; Osteoporosis ; genetics ; physiopathology ; therapy ; Rats ; Rats, Sprague-Dawley
8.Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients.
Li-jia WANG ; Yu BAI ; Zhao-shi BAO ; Yan CHEN ; Zhuo-hong YAN ; Wei ZHANG ; Quan-geng ZHANG
Chinese Medical Journal 2013;126(11):2062-2066
BACKGROUNDGlioblastoma is the most common and lethal cancer of the central nervous system. Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies, but the effects of these methylation abnormalities on glioblastomas are still largely unclear. Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment. To better understand the relationship between CpG island methylation status and patient outcome, this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets.
METHODSWe evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients. Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM. Survival curves were calculated according to the Kaplan-Meier method, and differences between curves were assessed using the log-rank test. Then, we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors.
RESULTSMicroarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P < 0.05). Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P < 0.05). This abnormality is also confirmed in glioblastoma cell lines (U87 and U251). Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P = 0.013).
CONCLUSIONSHypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients. TES might represent a valuable prognostic marker for glioblastoma.
Azacitidine ; analogs & derivatives ; pharmacology ; Brain Neoplasms ; drug therapy ; genetics ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cytoskeletal Proteins ; genetics ; DNA Methylation ; Glioblastoma ; drug therapy ; genetics ; pathology ; Humans ; LIM Domain Proteins ; genetics ; Promoter Regions, Genetic ; Treatment Outcome
9.Effect of Pinch-3 gene interference of glomerular podocytes on cell morphology and cell traction force.
Yu YANG ; Qingyuan NIU ; Zhenling JI ; Jingjing ZHANG ; Jianting LI ; Deshun MA
Journal of Biomedical Engineering 2013;30(3):530-533
Pinch-3 protein is an important constituent of cell membranes, which directly affects the cell morphology and mechanical properties. We observed and compared the change of morphology and cell traction force of glomerular podocytes before and after Pinch-3 gene inhibition by gene interference technology in this experiment. We found that a number of pores appeared on the cell surface, and the cell projected area were increased at the same time, with an approximate average about an increase of 40% after Pinch-3 gene inhibition. The results showed that the cell traction force of glomerular podocytes was significantly reduced, with an approximate average decrease of 40%, the maximum value of the cell traction force was reduced and the distribution of cell traction force became dispersive. All this suggested that after Pinch-3 gene inhibition, some pores created on the cell surface influenced the physical properties of glomerular podocytes and then affected the cell projected area and influenced the formation and distribution of cell traction force of the glomerular podocytes as well.
Adaptor Proteins, Signal Transducing
;
genetics
;
physiology
;
Biomechanical Phenomena
;
Cell Movement
;
Genetic Engineering
;
Humans
;
Kidney Glomerulus
;
cytology
;
LIM Domain Proteins
;
genetics
;
physiology
;
Mechanotransduction, Cellular
;
physiology
;
Membrane Proteins
;
genetics
;
physiology
;
Podocytes
;
cytology
;
physiology
;
Stress, Mechanical
10.Regulation of E-cadherin promoter activity by LMO2 impact on the progression and metastasis of prostate cancer.
Chinese Journal of Applied Physiology 2013;29(5):385-389
OBJECTIVETo study the abnormal expression of the proto-oncogene LMO2 affect the progression and metastasis mechanism of prostate cancer.
METHODSA series of reporter gene expression vectors carrying different lengths and point mutations of E-cadherin promoter were constructed. These plasmids were separately co-transfected with LMO2 into Lncap cells and the luciferase activity was detected after 24 h.
RESULTSThe overexpression of LMO2 could significantly inhibit the activity of luciferase reporter gene of E-cadherin promoter about 50%. Truncated and point mutation study showed that this was mainly through E-box sites in the promoter region -204/-198.
CONCLUSIONThe proto-oncogene LMO2 can affect the progression and metastasis mechanism of prostate cancer by transcriptional inhibition of E-cadherin.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Cadherins ; genetics ; Cell Line, Tumor ; Genetic Vectors ; Humans ; LIM Domain Proteins ; genetics ; metabolism ; Male ; Neoplasm Metastasis ; Point Mutation ; Promoter Regions, Genetic ; Prostatic Neoplasms ; genetics ; metabolism ; pathology ; Proto-Oncogene Proteins ; genetics ; metabolism

Result Analysis
Print
Save
E-mail